Skip to main content

Advertisement

Log in

Benthic Oxygen Fluxes Measured by Eddy Covariance in Permeable Gulf of Mexico Shallow-Water Sands

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and −191 ± 45 mmol m−2 day−1 for the Gulf sites and 130 ± 57 and −152 ± 64 mmol m−2 day−1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aller RC (1982) The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall PL, Tevesz MJS (eds) Animal-sediment relations. Plenum Press, New York

    Google Scholar 

  • Asmus RM, Bauerfeind E (1994) The microphytobenthos of konigshafen—spatial and seasonal distribution on a sandy tidal flat. Helgol Meeresunters 48:257–276. doi:10.1007/bf02367040

    Article  Google Scholar 

  • Attard KM, Glud RN, McGinnis DF, Rysgaard S (2014) Seasonal rates of benthic primary production in a Greenland fjord measured by aquatic eddy correlation. Limnol Oceanogr 59:1555–1569

    Article  Google Scholar 

  • Attard KM, Stahl H, Kamenos NA, Turner G, Burdett HL, Glud RN (2015) Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: an eddy covariance study. Mar Ecol Prog Ser 535:99–115

    Article  Google Scholar 

  • Berg P, Huettel M (2008) Monitoring the seafloor using the noninvasive eddy correlation technique: integrated benthic exchange dynamics. Oceanography 21:164–167

    Article  Google Scholar 

  • Berg P, Roy H, Janssen F, Meyer V, Jorgensen BB, Huettel M, de Beer D (2003) Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar Ecol Prog Ser 261:75–83

    Article  Google Scholar 

  • Berg P, Glud RN, Hume A, Stahl H, Oguri K, Meyer V, Kitazato H (2009) Eddy correlation measurements of oxygen uptake in deep ocean sediments. Limnol Oceanogr Methods 7:576–584. doi:10.4319/lom.2009.7.576

    Article  Google Scholar 

  • Berg P et al (2013) Eddy correlation measurements of oxygen fluxes in permeable sediments exposed to varying current flow and light. Limnol Oceanogr 58:1329–1343. doi:10.4319/lo.2013.58.4.1329

    Article  Google Scholar 

  • Berg P, Reimers CE, Rosman JE, Huettel M, Delgard ML, Reidenbach MA, Özkan-Haller HT (2015) Technical note: time lag correction of aquatic eddy covariance data measured in presence of waves. Biogeosciences 12:6721–6735. doi:10.5194/bg-12-6721-2015

    Article  Google Scholar 

  • Berg P, Koopmans DJ, Huettel M, Li H, Mori K, Wüest A (2016) A new robust oxygen–temperature sensor for aquatic eddy covariance measurements. Limnol Oceanogr Methods 14:151–167. doi:10.1002/lom3.10071

    Article  Google Scholar 

  • Blanchard GF, Guarini JM, Gros P, Richard P (1997) Seasonal effect on the relationship between the photosynthetic capacity of intertidal microphytobenthos and temperature. J Phycol 33:723–728. doi:10.1111/j.0022-3646.1997.00723.x

    Article  Google Scholar 

  • Boudreau BP et al (2001) Permeable marine sediments: overturning an old paradigm. EOS Trans Am Geophys Union 82:133–136

    Google Scholar 

  • Businger JA (1986) Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J Clim Appl Meteorol 25:1100–1124

    Article  Google Scholar 

  • Cahoon LB (1999) The role of benthic microalgae in neritic ecosystems. Oceanogr Mar Biol 37:47–86

    Google Scholar 

  • Cahoon LB, Cooke JE (1992) Benthic microalgal production in Onslow Bay, North Carolina, USA. Mar Ecol Prog Ser 84:185–196

    Article  Google Scholar 

  • Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J et al (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40

    Article  Google Scholar 

  • Carpenter R, Williams S (2007) Mass transfer limitation of photosynthesis of coral reef algal turfs. Mar Biol 151:435–450

    Article  Google Scholar 

  • Chipman L, Podgorski D, Green S, Kostka J, Cooper W, Huettel M (2010) Decomposition of plankton-derived dissolved organic matter in permeable coastal sediments. Limnol Oceanogr 55:857–871

    Article  Google Scholar 

  • Chipman L, Huettel M, Berg P, Meyer V, Klimant I, Glud RN, Wenzhoefer F (2012) Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems. Limnol Oceanogr Methods 10:304–316

    Article  Google Scholar 

  • Cook PLM, Røy H (2006) Advective relief of CO2 limitation in highly productive sandy sediments. Limnol Oceanogr 51:1594–1601

    Article  Google Scholar 

  • Cook PLM, Wenzhöfer F, Glud RN, Janssen F, Huettel M (2007) Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: effect of advective pore-water exchange. Limnol Oceanogr 52:1943–1963

    Article  Google Scholar 

  • D’Andrea AF, Aller RC, Lopez GR (2002) Organic matter flux and reactivity on a South Carolina sandflat: the impacts of porewater advection and macrobiological structures. Limnol Oceanogr 47:1056–1070

    Article  Google Scholar 

  • de Beer D, Wenzhöefer F, Ferdelman TG, Boehme SE, Huettel M et al (2005) Transport and mineralization rates in North Sea intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr 50(1):113–127

    Article  Google Scholar 

  • Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists. Advanced series on ocean engineering 2. World Scientific, Singapore

    Book  Google Scholar 

  • Donis D et al (2015) An assessment of the precision and confidence of aquatic eddy correlation measurements. J Atmos Ocean Technol 32:642–655. doi:10.1175/JTECH-D-14-00089.1

    Article  Google Scholar 

  • Donis D, McGinnis DF, Holtappels M, Felden J, Wenzhöefer F (2016) Assessing benthic oxygen fluxes in oligotrophic deep sea sediments (HAUSGARTEN observatory). Deep-Sea Res Part I Oceanogr Res Pap 111:1–10

    Article  Google Scholar 

  • Forster S, Huettel M, Ziebis W (1996) Impact of boundary layer flow velocity on oxygen utilisation in coastal sediments. Mar Ecol Prog Ser 146:173–185

    Article  Google Scholar 

  • Forster S, Glud RN, Gundersen JK, Huettel M (1999) In situ study of bromide tracer and oxygen flux in coastal sediments. Estuar Coast Shelf Sci 49:813–827

    Article  Google Scholar 

  • Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D (2006) Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3:489–513

    Article  Google Scholar 

  • Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4:243–289

    Article  Google Scholar 

  • Glud RN, Berg P, Hume A, Batty P, Blicher ME, Lennert K, Rysgaard S (2010) Benthic O2 exchange rates across hard-bottom substrates quantified by eddy correlation in a sub-Arctic fjord system. Mar Ecol Prog Ser 417:1–12

    Article  Google Scholar 

  • Grant J (1986) Sensitivity of benthic community respiration and primary production to changes in temperature and light. Mar Biol 90:299–306

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Gundersen JK, Ramsing NB, Glud RN (1998) Predicting the signal of O-2 microsensors from physical dimensions, temperature, salinity, and O-2 concentration. Limnol Oceanogr 43:1932–1937

    Article  Google Scholar 

  • Hallas MK, Huettel M (2013) Bar-built estuary as a buffer for riverine silicate discharge to the coastal ocean. Cont Shelf Res 55:76–85. doi:10.1016/j.csr.2013.01.011

    Article  Google Scholar 

  • Hancke K, Glud RN (2004) Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquat Microb Ecol 37:265–281

    Article  Google Scholar 

  • Hargrave BT, Prouse NJ, Phillips GA, Neame PA (1983) primary production and respiration in pelagic and benthic communities at 2 intertidal sites in the upper bay of fundy. Can J Fish Aquat Sci 40:229–243

    Article  Google Scholar 

  • He RY, Weisberg AH (2002) Tides on the West Florida shelf. J Phys Oceanogr 32:3455–3473

    Article  Google Scholar 

  • Holtappels M, Glud RN, Donis D, Liu B, Hume A, Wenzhöfer F, Kuypers M (2013) Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements. J Geophys Res Oceans 118:1157–1169. doi:10.1002/jgrc.20112

    Article  Google Scholar 

  • Holtappels M, Noss Hancke K, Cathalot C, McGinnis DF, Lorke A, Glud RN (2015) Aquatic eddy correlation: quantifying the artificial flux caused by stirring-sensitive O2 sensors. PLoS ONE 10:e0116564. doi:10.1371/journal.pone.0116564

    Article  Google Scholar 

  • Huang WR, Spaulding M (2002) Modelling residence-time response to freshwater input in Apalachicola Bay, Florida, USA. Hydrol Process 16:3051–3064

    Article  Google Scholar 

  • Huettel M, Gust G (1992) Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar Ecol Prog Ser 89:253–267

    Article  Google Scholar 

  • Huettel M, Rusch A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45:534–549

    Article  Google Scholar 

  • Huettel M, Webster IT (2000) Porewater flow in permeable sediment. In: Boudreau BP, Jørgensen BB (eds) The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, Oxford, pp 144–179

    Google Scholar 

  • Huettel M, Ziebis W, Forster S, Luther GW (1998) Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim Cosmochim Acta 62:613–631

    Article  Google Scholar 

  • Huettel M, Røy H, Precht E, Ehrenhauss S (2003) Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494:231–236

    Article  Google Scholar 

  • Huettel M, Berg P, Kostka JE (2014) Benthic exchange and biogeochemical cycling in permeable sediments. Annu Rev Mar Sci 6(6):23–51. doi:10.1146/annurev-marine-051413-012706

    Article  Google Scholar 

  • Hume AC, Berg P, McGlathery KJ (2011) Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique. Limnol Oceanogr 56:86–96. doi:10.4319/lo.2011.56.1.0086

    Article  Google Scholar 

  • Jahnke RA, Marinelli RL, Eckmann JE, Nelson JR (1996) Pore water nutrient distributions in non-accumulating, sandy sediments of the South Atlantic Bight continental shelf. EOS 76:202

    Google Scholar 

  • Jahnke RA, Nelson JR, Marinelli RL, Eckman JE (2000) Benthic flux of biogenic elements on the Southeastern US continental shelf: influence of pore water advective transport and benthic microalgae. Cont Shelf Res 20:109–127

    Article  Google Scholar 

  • Jahnke R, Richards M, Nelson J, Robertson C, Rao A, Jahnke D (2005) Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments. Cont Shelf Res 25:1433–1452. doi:10.1016/j.csr.2005.04.002

    Article  Google Scholar 

  • Jahnke RA, Nelson JR, Richards ME, Robertson CY, Rao AMF, Jahnke DB (2008) Benthic primary productivity on the Georgia midcontinental shelf: benthic flux measurements and high-resolution, continuous in situ PAR records. J Geophys Res 113:C08022. doi:10.1029/2008JC004745

    Article  Google Scholar 

  • Janssen F, Huettel M, Witte U (2005) Pore-water advection and solute fluxes in permeable marine sediments (II): benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnol Oceanogr 50:779–792

    Article  Google Scholar 

  • Jasby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  Google Scholar 

  • Krause-Jensen D, Markager S, Dalsgaard T (2012) Benthic and pelagic primary production in different nutrient regimes. Estuar Coasts 35:527–545. doi:10.1007/s12237-011-9443-1

    Article  Google Scholar 

  • Kristensen E, Aller RC, Aller JY (1991) Oxic and anoxic decomposition of tubes from the burrowing sea anemone Ceriantheopsis americanus—implications for bulk sediment carbon and nitrogen balance. J Mar Res 49:589–617

    Article  Google Scholar 

  • Kristensen E, Jensen MH, Jensen KM (1997) Temporal variations in microbenthic metabolism and inorganic nitrogen fluxes in sandy and muddy sediments of a tidally dominated bay in the northern Wadden Sea. Helgol Meeresunters 51:295–320. doi:10.1007/bf02908717

    Article  Google Scholar 

  • Kuwae T, Kamio K, Inoue T, Miyoshi E, Uchiyama Y (2006) Oxygen exchange flux between sediment and water in an intertidal sandflat, measured in situ by the eddy-correlation method. Mar Ecol Prog Ser 307:59–68

    Article  Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micro-meteorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Long MH, Berg P, de Beer D, Zieman JC (2013) In situ coral reef oxygen metabolism: an eddy correlation study. PLoS ONE. doi:10.1371/journal.pone.0058581

    Google Scholar 

  • Long MH, Berg P, McGlathery K, Zieman JC (2015) Sub-tropical seagrass ecosystem metabolism measured by eddy covariance. Mar Ecol Prog Ser 529:75–90. doi:10.3354/meps11314

    Article  Google Scholar 

  • Lorke A, McGinnis DF, Maeck A (2013) Eddy-correlation measurements of benthic fluxes under complex flow conditions: effects of coordinate transformations and averaging time scales. Limnol Oceanogr Methods 11:425–437. doi:10.4319/lom.2013.11.425

    Article  Google Scholar 

  • Lorrai C, McGinnis DF, Brand A, Wüest A (2010) Application of oxygen eddy correlation in aquatic systems. J Atmos Ocean Technol 27:1533–1546. doi:10.1175/2010JTECHO723.1

    Article  Google Scholar 

  • Macintyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuaries 19:186–201

    Article  Google Scholar 

  • Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. PNAS 107(6):2527–2531

    Article  Google Scholar 

  • McCann-Grosvenor K, Reimers CE, Sanders RD (2014) Dynamics of the benthic boundary layer and seafloor contributions to oxygen depletion on the Oregon inner shelf. Cont Shelf Res 84:93–106. doi:10.1016/j.csr.2014.05.010

    Article  Google Scholar 

  • McGinnis DF, Berg P, Brand A, Lorrai C, Edmonds TJ, Wuest A (2008) Measurements of eddy correlation oxygen fluxes in shallow freshwaters: towards routine applications and analysis. Geophys Res Lett. doi:10.1029/2007gl032747

    Google Scholar 

  • McGinnis DF, Sommer S, Lorke A, Glud RN, Linke P (2014) Quantifying tidally driven benthic oxygen exchange across permeable sediments: an aquatic eddy correlation study. J Geophys Res 119:6918–6932

    Article  Google Scholar 

  • Mermillod-Blondin F, Francois-Carcaillet F, Rosenberg R (2005) Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. J Exp Mar Biol Ecol 315:187–209

    Article  Google Scholar 

  • Meyercordt J, Gerbersdorf S, Meyer-Reil LA (1999) Significance of pelagic and benthic primary production in two shallow coastal lagoons of different degrees of eutrophication in the southern Baltic Sea. Aquat Microb Ecol 20:273–284. doi:10.3354/ame020273

    Article  Google Scholar 

  • Morey SL, Dukhovskoy DS, Bourassa MA (2009) Connectivity of the Apalachicola River flow variability and the physical and bio-optical oceanic properties of the northern West Florida Shelf. Cont Shelf Res 29:1264–1275. doi:10.1016/j.csr.2009.02.003

    Article  Google Scholar 

  • Mortazavi B, Iverson RL, Huang WR, Lewis FG, Caffrey JM (2000a) Nitrogen budget of Apalachicola Bay, a bar-built estuary in the northeastern Gulf of Mexico. Mar Ecol Prog Ser 195:1–14

    Article  Google Scholar 

  • Mortazavi B, Iverson RL, Landing WM, Huang WR (2000b) Phosphorus budget of Apalachicola Bay: a river-dominated estuary in the northeastern Gulf of Mexico. Mar Ecol Prog Ser 198:33–42

    Article  Google Scholar 

  • Precht E, Franke U, Polerecky L, Huettel M (2004) Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnol Oceanogr 49:693–705. doi:10.4319/lo.2004.49.3.0693

    Article  Google Scholar 

  • Reimers CE, Özkan-Haller T, Berg P, Devol A, McCann-Grosvenor K, Sanders RD (2012) Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method. J Geophys Res 117:1–18. doi:10.1029/2011JC007564

    Article  Google Scholar 

  • Reimers CE, Ozkan-Haller T, Albright A, Berg P (2016) Microelectrode velocity effects and aquatic eddy covariance measurements under waves. J Atmos Ocean Technol 33:263–282

    Article  Google Scholar 

  • Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–478

    Article  Google Scholar 

  • Rheuban JE, Berg P, McGlathery KJ (2014a) Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina) measured by eddy correlation. Limnol Oceanogr 59:1376–1387. doi:10.4319/lo.2014.59.4.1376

    Article  Google Scholar 

  • Rheuban JE, Berg P, McGlathery KJ (2014b) Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar Ecol Prog Ser 507:1–13. doi:10.3354/meps10843

    Article  Google Scholar 

  • Riedl R, Huang N, Machan R (1972) The subtidal pump: a mechanism of interstitial water exchange by wave action. Mar Biol 13:210–221

    Article  Google Scholar 

  • Rusch A, Huettel M, Wild C, Reimers CE (2006) Benthic oxygen consumption and organic matter turnover in organic-poor, permeable shelf sands. Aquat Geochem 12:1–19

    Article  Google Scholar 

  • Santema M, Clarke AJ, Speer K, Huettel M (2015) Water column oxygen dynamics within the coastal gradient in the northeastern Gulf of Mexico inner shelf. Cont Shelf Res 104:104–119. doi:10.1016/j.csr.2015.05.006

    Article  Google Scholar 

  • Santos IR, Glud RN, Maher D, Erler D, Eyre BD (2011) Diel coral reef acidification driven by porewater advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophys Res Lett 38:L03604

    Article  Google Scholar 

  • Snyder RA et al (2014a) Polycyclic aromatic hydrocarbon concentrations across the Florida Panhandle continental shelf and slope after the BP MC 252 well failure. Mar Pollut Bull 89:201–208. doi:10.1016/j.marpolbul.2014.09.057

    Article  Google Scholar 

  • Snyder RA, Vestal A, Welch C, Barnes G, Pelot R, Ederington-Hagy M, Hileman F (2014b) PAH concentrations in Coquina (Donax spp.) on a sandy beach shoreline impacted by a marine oil spill. Mar Pollut Bull 83:87–91. doi:10.1016/j.marpolbul.2014.04.016

    Article  Google Scholar 

  • Thamdrup B, Hansen JW, Jorgensen BB (1998) Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiol Ecol 25:189–200. doi:10.1016/s0168-6496(97)00095-0

    Article  Google Scholar 

  • Wenzhofer F, Glud RN (2004) Small-scale spatial and temporal variability in coastal benthic O-2 dynamics: effects of fauna activity. Limnol Oceanogr 49:1471–1481

    Article  Google Scholar 

  • Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol Oceanogr 29:236–249

    Article  Google Scholar 

  • Wild C, Rasheed M, Jantzen C, Cook P, Struck U, Huettel M, Boetius A (2005) Benthic metabolism and degradation of natural particulate organic matter in carbonate and silicate reef sands of the northern Red Sea. Mar Ecol Prog Ser 298:69–78

    Article  Google Scholar 

  • Wild C, Naumann MS, Haas A, Struck U, Mayer FW, Rasheed MY, Huettel M (2009) Coral sand O-2 uptake and pelagic-benthic coupling in a subtropical fringing reef, Aqaba, Red Sea. Aquatic Biology 6:133–142

    Article  Google Scholar 

  • Wolfstein K, Stal LJ (2002) Production of extracellular polymeric substances (EPS) by benthic diatoms: effect of irradiance and temperature. Mar Ecol Prog Ser 236:13–22

    Article  Google Scholar 

  • Zavala-Hidalgo J, Romero-Centeno R, Mateos-Jasso A, Morey SL, Martinez-Lopez B (2014) The response of the Gulf of Mexico to wind and heat flux forcing: what has been learned in recent years? Atmosfera 27:317–334

    Article  Google Scholar 

  • Ziebis W, Forster S, Huettel M, Jorgensen BB (1996a) Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed (vol 382, pg 619, 1996). Nature 383:457

    Google Scholar 

  • Ziebis W, Huettel M, Forster S (1996b) Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar Ecol Prog Ser 140:227–237

    Article  Google Scholar 

Download references

Acknowledgments

We thank Pascal Brignole, Natalie Geyer, Chiu Cheng, Andrew Hume, John Kaba, Matt Long, Cedric Magen, Lee Russell, Mike Santema, and Brian Wells for help with the fieldwork and laboratory analyses. We also would like to thank all the volunteers that helped with instrument deployments and sample collection. This research was supported by funding from NSF Projects OCE-424967, OCE-536431, OCE-0758446, OCE-1061110 and OCE-1334117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Huettel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipman, L., Berg, P. & Huettel, M. Benthic Oxygen Fluxes Measured by Eddy Covariance in Permeable Gulf of Mexico Shallow-Water Sands. Aquat Geochem 22, 529–554 (2016). https://doi.org/10.1007/s10498-016-9305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-016-9305-3

Keywords

Navigation