Skip to main content
Log in

The Dynamics of Benthic Respiration at a Mid-Shelf Station Off Oregon

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between −2 and −15 mmol m−2 d−1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m−2 for the upwelling season (May–September) and 6.8 mol m−2 y−1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbott AN, Haley BA, McManus J, Reimers CE (2015) The sedimentary flux of dissolved rare earth elements to the ocean. Geochim Cosmochim Acta 154:186–200

    Article  Google Scholar 

  • Adams KA, Barth JA, Chan F (2013) Temporal variability of near-bottom dissolved oxygen during upwelling off central Oregon. J Geophys Res 118:4839–4854. doi:10.1002/jgrc.20361

    Article  Google Scholar 

  • Allan JC, Komar PD (2006) Climate controls on US west coast erosion processes. J Coast Res 22:511–529

    Article  Google Scholar 

  • Aller RC (2014) Sedimentary diagenesis, depositional environments, and benthic fluxes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 8, 2nd edn. Elsevier, Oxford, pp 293–334

    Chapter  Google Scholar 

  • Barth JA, Pierce SD, Castelao RM (2005) Time-dependent, wind-driven flow over a shallow midshelf submarine bank. J Geophys Res Oceans 110:C10S05. doi:10.1029/2004JC002761

    Google Scholar 

  • Berelson WM, McManus J, Severmann S, Reimers CE (2013) Benthic flux of oxygen and nutrients across Oregon/California shelf sediments. Cont Shelf Res 55:66–75

    Article  Google Scholar 

  • Berg P, Rϕy H, Janssen F, Meyer V, Jϕrgensen BB, Huettel M, De Beer D (2003) Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy correlation technique. Mar Ecol Prog Ser 261:75–83

    Article  Google Scholar 

  • Berg P, Røy H, Wiberg PL (2007) Eddy correlation flux measurements: the sediment surface area that contributes to the flux. Limnol Oceanogr 52(4):1672–1684

    Article  Google Scholar 

  • Berg P, Long MH, Huettel M, Rheuban JE, McGlathery KJ, Howarth RW, Foreman KH, Giblin AE, Morino R (2013) Eddy correlation measurements of oxygen fluxes in permeable sediments exposed to varying current flow and light. Limnol Oceanogr 58:1329–1343

    Article  Google Scholar 

  • Berg P, Reimers CE, Rosman JH, Huettel M, Delgard ML, Reidenbach MA, Özkan-Haller HT (2015) Technical note: time lag correction of aquatic eddy covariance data measured in the presence of waves. Biogeosciences 12:6721–6735

    Article  Google Scholar 

  • Berg P, Koopmans DJ, Huettel M, Li H, Mori W, Wüest A (2016) A new robust oxygen-temperature sensor for aquatic eddy covariance measurements. Limnol Oceanogr Methods 14:151–167

    Article  Google Scholar 

  • Bosch J (2002) Satellite-measured chlorophyll variability within the upwelling zone near Hecata Bank, Oregon. MS Thesis, University of Maine, p 87

  • Boudreau BP (1997) Diagenetic models and their implementation. Springer, Berlin

    Book  Google Scholar 

  • Brand A, McGinnis DF, Wehrli B, Wüest A (2008) Intermittent oxygen flux from the interior into the bottom boundary of lakes as observed by eddy correlation. Limnol Oceanogr 53:1997–2006

    Article  Google Scholar 

  • Cai W-J, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52:123–131

    Article  Google Scholar 

  • Chan F, Barth JA, Lubchenco J, Kirincich A, Weeks HA, Peterson WH, Menge BA (2008) Emergence of anoxia in the California Current large marine ecosystem. Science 319:920

    Article  Google Scholar 

  • Christensen PB, Rysgaard S, Sloth NP, Dalsgarrd T, Schwaerter S (2000) Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat Microb Ecol 21:73–84

    Article  Google Scholar 

  • Connolly TP, Hickey BM, Geier SL, Cochlan WP (2010) Processes influencing hypoxia in the northern California Current system. J Geophys Res Oceans 115:C03021. doi:10.1029/2009JC005283

    Article  Google Scholar 

  • Dean RG, Dalrymple RA (1992) Water wave mechanics for engineers and scientists. In: Advanced series on ocean engineering, vol 2. World Scientific Publishing, p 353

  • Donis D, Holtappels M, Noss C, Cathalot C, Hancke K, Polsenaere P, Wenzhoefer F, Lorke A, Meysman FJR, Glud RN, McGinnis DF (2015) An assessment of the precision and confidence of aquatic eddy correlation measurements. J Atmos Ocean Technol 32:642–655

    Article  Google Scholar 

  • Erhardt AM, Reimers CE, Kadko D, Paytan A (2014) Records of trace metals in sediments from the Oregon shelf and slope: investigating the occurrence of hypoxia over the past several thousand years. Chem Geol 382:32–43

    Article  Google Scholar 

  • Erofeeva SY, Egbert GD, Kosro PM (2003) Tidal currents on the central Oregon shelf: models, data, and assimulation. J Geophys Res Oceans 108(C5):3148. doi:10.1029/2002JC001615

    Article  Google Scholar 

  • Evans W, Hales B, Strutton PG (2011) Seasonal cycle of surface ocean pCO2 on the Oregon shelf. J Geophys Res 116:C05012. doi:10.1029/2010JC006625

    Google Scholar 

  • Finnigan J (2004) Advection and modeling. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology. A guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht, pp 209–244

    Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques Part 1: averaging and coordinate rotation. Bound Layer Meteorl 107:1–48

    Article  Google Scholar 

  • Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 8:205–222

    Article  Google Scholar 

  • Fuchsman CA, Devol AH, Chase Z, Reimers CE, Hales B (2015) Benthic fluxes on the Oregon shelf. Estuar Coast Shelf Sci 163:156–166

    Article  Google Scholar 

  • Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128:117–126. doi:10.1061/(ASCE)0733-9429(2002)128:1(117)

    Article  Google Scholar 

  • Güss S (1998) Oxygen uptake at the sediment water interface simultaneously measured using a flux chamber method and microelectrodes: must a diffusive boundary layer exist? Estuar Coast Shelf Sci 46:143–156

    Article  Google Scholar 

  • Hall POJ, Aller RC (1992) Rapid, small-volume, flow injection analysis for ΣCO2 and NH4 + in marine and freshwaters. Limnol Oceanogr 37:1113–1119

    Article  Google Scholar 

  • Henkel SK (2011) Characterization of benthic conditions and organisms on the Oregon south coast: a rapid evaluation of habitat characteristics and benthic organisms at the proposed Reedsport wave park. A report prepared for the Oregon Wave Energy Trust, p 15

  • Holtappels M, Glud RN, Donis D, Liu B, Hume A, Wenzhöfer F, Kuypers MMM (2013) Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements. J Geophys Res Oceans 118:1157–1169

    Article  Google Scholar 

  • Holtappels M, Christian N, Hancke K, Cathalot C, McGinnis DF, Lorke A, Glud RN (2015) Aquatic eddy correlation: quantifying the artificial flux caused by stirring sensitive O2 sensors. PLoS One 10(1):e0116564

    Article  Google Scholar 

  • Huettel M, Rusch A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45:534–549

    Article  Google Scholar 

  • Huettel M, Webster IT (2001) Porewater flow in permeable sediments. In: Boudreau BP, Jørgensen BB (eds) The benthic boundary layer transport processes and biogeochemistry. Oxford University Press, New York, pp 144–179

    Google Scholar 

  • Inoue T, Glud RN, Stahl H, Hume A (2011) Comparison of three methods for assessing in situ friction velocity: a case study from Loch Etive, Scotland. Limnol Oceanogr Methods 9:275–287

    Article  Google Scholar 

  • Jahnke R (2010) Global Synthesis. In: Liu KK, Atkinson L, Quiñones R, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins. Springer, Berlin, pp 597–615

    Chapter  Google Scholar 

  • Jahnke R, Richards M, Nelson J, Robertson C, Rao A, Jahnke D (2005) Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments. Cont Shelf Res 25:1433–1452

    Article  Google Scholar 

  • Jørgensen BB (2006) Bacteria and marine biogeochemistry. In: Schultz HD, Zabel M (eds) Marine geochemistry, 2nd edn. Springer, Berlin, pp 169–206

    Chapter  Google Scholar 

  • Komar PD, Neudeck RH, Kulm LD (1972) Observations and significance of deepwater oscillatory ripple marks on the Oregon continental shelf. In: Swift D, Duane D, Pilkey O (eds) Shelf sediment transport. Dowden, Hutchinson and Ross, Inc, Stroudsburg, pp 601–619

    Google Scholar 

  • Lohse L, Epping EHG, Helder W, van Raaphorst W (1996) Oxygen pore water profiles in continental shelf sediments of the North Sea: turbulent versus molecular diffusion. Mar Ecol Prog Ser 145:63–75

    Article  Google Scholar 

  • Lorrai C, McGinnis DF, Berg P, Brand A, Wüest A (2010) Application of oxygen eddy correlation in aquatic systems. J Atmos Ocean Technol 27:1533–1546

    Article  Google Scholar 

  • McCann-Grosvenor K, Reimers CE, Sanders RD (2014) Dynamics of the benthic boundary layer and seafloor contributions to oxygen depletion on the Oregon inner shelf. Cont Shelf Res 84:93–106

    Article  Google Scholar 

  • McGinnis DF, Sommer S, Lorke A, Glud RN, Linke P (2014) Quantifying tidally-driven benthic oxygen exchange across permeable sediments: an aquatic eddy correlation study. J Geophys Res Oceans 119:6918–6932

    Article  Google Scholar 

  • Middelburg JJ, Soetaert K (2004) The role of sediments in shelf ecosystem dynamics. In: Robinson AR, McCarthy J, Rothschild BJ (eds) The sea, volume 13, ISBN 0-471-18901-4, pp 353–373

  • Moum JN, Klymak JM, Nash JD, Perlin A, Smith WD (2007) Energy transport by nonlinear internal waves. J Phys Oceanogr 37:1968–1988

    Article  Google Scholar 

  • Nagai T, Gruber N, Frenzel H, Lachkar Z, McWilliams JC, Plattner G-K (2015) Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System. J Geophys Res Oceans 120:5318–5341. doi:10.1002/2015JC010889

    Article  Google Scholar 

  • Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol Ecol 86:357–362

    Article  Google Scholar 

  • Pamatmat MM (1971) Oxygen consumption by the seabed IV. Shipboard and laboratory experiments. Limnol Oceangr 16:536–550

    Article  Google Scholar 

  • Pastor L, Cathalot C, Deflandre B, Viollier E, Soetaert K, Meysman FJR, Ulses C, Metzger E, Rabouille C (2011) Modeling biogeochemical processes from the Rhône River prodelta area (NW Mediterranean Sea). Biogeosciences 8:1351–1366

    Article  Google Scholar 

  • Perlin A, Moum JN, Klymak J (2005) Response of the bottom boundary layer over a sloping shelf to variations in alongshore wind. J Geophys Res Oceans 110:C10S09. doi:10.1029/2004JC002500

    Google Scholar 

  • Perlin A, Moum JN, Klymak JM, Levine MD, Boyd T, Kosro PM (2007) Organization of stratification, turbulence, and veering in bottom Ekman layers. J Geophys Res 112:C05S90. doi:10.1029/2004JC002641

    Article  Google Scholar 

  • Peterson JO, Morgan CA, Peterson WT, Di Lorenzo E (2013) Seasonal and interannual variation in the extent of hypoxia in the northern California Current from 1998-2012. Limnol Oceanogr 58:2279–2292

    Article  Google Scholar 

  • Pierce SD, Barth JA, Shearman RK, Erofeev AY (2012) Declining oxygen in the Northeast Pacific. J Phys Oceanogr 42:495–501

    Article  Google Scholar 

  • Precht E, Franke U, Polerecky L, Huettel M (2004) Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnol Oceanogr 49:693–705

    Article  Google Scholar 

  • Reimers CE, Stecher HA III, Taghon GL, Fuller CM, Huettel M, Rusch A, Ryckelynck N, Wild C (2004) In situ measurements of advective solute transport in permeable shelf sands. Cont Shelf Res 24:183–201

    Article  Google Scholar 

  • Reimers CE, Özkan-Haller HT, Berg P, Devol A, McCann-Grosvenor K, Sanders RD (2012) Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: evaluation of the eddy correlation method. J Geophys Res Oceans 117:C02021. doi:10.1029/2011JC007564

    Article  Google Scholar 

  • Reimers CE, Özkan-Haller HT, Albright A, Berg P (2016) Microelectrode velocity effects and aquatic eddy covariance measurements under waves. J Atmos Ocean Technol 33:263–282. doi:10.1175/JTECH-D-15-0041.1

    Article  Google Scholar 

  • Rheuban JE, Berg P (2013) The effects of spatial and temporal variability at the sediment surface on aquatic eddy correlation measurements. Limnol Oceanogr Methods 11:351–359

    Article  Google Scholar 

  • Robert K, Juniper SK (2012) Surface-sediment bioturbation quantified with cameras on the NEPTUNE Canada cabled observatory. Mar Ecol Prog Ser 453:137–149

    Article  Google Scholar 

  • Romsos C, Goldfinger C, Robison R, Milstein R, Chaytor J (2007) Development of a regional seafloor surficial geologic habitat map for the continental margins of Oregon and Washington, USA. In: Todd BJ, Greene G (eds) Mapping the seafloor for habitat characterization. Geological Association of Canada Special Paper 47, pp 209–234

  • Seeberg-Elverfeldt J, Schülter M, Feseker T, Kölling M (2005) Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods 3:361–371

    Article  Google Scholar 

  • Severmann S, McManus J, Berelson WM, Hammond DE (2010) The continental shelf benthic iron flux and its isotope composition. Geochim Cosmochim Acta 74:3984–4004

    Article  Google Scholar 

  • Siedlecki SA, Banas NS, Davis KA, Giddings S, Hickey BM, MacCready P, Connelly T, Geier S (2015) Seasonal and interannual oxygen variability on the Washington and Oregon continental shelves. J Geophys Res Oceans 120:608–633. doi:10.1002/2014JC010254

    Article  Google Scholar 

  • Soetaert K, Herman PMJ, Middelburg JJ (1996) Dynamic response of deep-sea sediments to seasonal variations: a model. Limnol Oceanogr 41:1651–1668

    Article  Google Scholar 

  • Tillotson K, Komar PD (1997) The wave climate of the Pacific Northwest (Oregon and Washington): a comparison of data sources. J Coastal Res 13:440–452

    Google Scholar 

  • Tissot BN, Wakefield WW, Hixon MA, Clemons JER (2008) Twenty years of fish-habitat studies on Heceta Bank, Oregon. In: Reynolds JR, Greene HG (eds) Marine habitat mapping technology for Alaska, Alaska Sea Grant college program, University of Alaska Fairbanks, pp 203–217. doi:10.4027/mhmta.2008.15

  • Wheatcroft RA, Goñi MA, Richardson KN, Borgeld JC (2013) Natural and human impacts on centennial sediment accumulation patterns on the Umpqua River margin, Oregon. Mar Geol 339:44–56

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (NSF) under Grant OCE-1061218. Peter Chace’s participation was funded by the NSF Research Experience for Undergraduates (REU) Program under Grant No. NSF OCE-1263349. We are indebted to the marine technicians, officers, and crew of the R/Vs Wecoma and Oceanus for the execution of the field studies. We also acknowledge contributions at sea from Margaret Sparrow, Katie Watkins-Brandt, Andrea Albright, Shelby LaBuhn, Cody Doolen, Michael Courtney, and Annie Thorp. Pore water iron and nutrient analyses were performed by Jessie Muratli and Joe Jennings in facilities at Oregon State University. Chip Hogue helped to gather and interpret sediment infauna data. Peter Berg and one anonymous reviewer provided helpful manuscript reviews. This paper is dedicated to Rick and Debbie Jahnke whose work and collegiality have shaped the field of benthic biogeochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare E. Reimers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimers, C.E., Özkan-Haller, H.T., Sanders, R.D. et al. The Dynamics of Benthic Respiration at a Mid-Shelf Station Off Oregon. Aquat Geochem 22, 505–527 (2016). https://doi.org/10.1007/s10498-016-9303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-016-9303-5

Keywords

Navigation