Skip to main content
Log in

Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis

Apoptosis Aims and scope Submit manuscript

A Correction to this article was published on 23 September 2019

This article has been updated

Abstract

During apoptosis, dying cells undergo dynamic morphological changes that ultimately lead to their disassembly into fragments called apoptotic bodies (ApoBDs). Reorganisation of the cytoskeletal structures is key in driving various apoptotic morphologies, including the loss of cell adhesion and membrane bleb formation. However, whether cytoskeletal components are also involved in morphological changes that occur later during apoptosis, such as the recently described generation of thin apoptotic membrane protrusions called apoptopodia and subsequent ApoBD formation, is not well defined. Through monitoring the progression of apoptosis by confocal microscopy, specifically focusing on the apoptopodia formation step, we characterised the presence of F-actin and microtubules in a subset of apoptopodia generated by T cells and monocytes. Interestingly, targeting actin polymerisation and microtubule assembly pharmacologically had no major effect on apoptopodia formation. These data demonstrate apoptopodia as a novel type of membrane protrusion that could be formed in the absence of actin polymerisation and microtubule assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 23 September 2019

    The original version of the article unfortunately contained a typo in the fourth author name. The author name was incorrectly listed as Rochelle Tixeria. The correct name should be Rochelle Tixeira. The original article has been corrected.

References

  1. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    CAS  PubMed  Google Scholar 

  2. Small JV et al (2002) The lamellipodium: where motility begins. Trends Cell Biol 12:112–120

    CAS  PubMed  Google Scholar 

  3. Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9:431–436

    CAS  PubMed  Google Scholar 

  4. Eddy RJ et al (2017) Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol 27:595–607

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ballestrem C et al (2000) Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol Biol Cell 11:2999–3012

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schoumacher M et al (2010) Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol 189:541–556

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rustom A et al (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    CAS  PubMed  Google Scholar 

  8. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Keller KE et al (2017) Tunneling nanotubes are novel cellular structures that communicate signals between trabecular meshwork cells. Invest Ophthalmol Vis Sci 58:5298–5307

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    CAS  PubMed  Google Scholar 

  11. Insall RH, Machesky LM (2009) Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 17:310–322

    CAS  PubMed  Google Scholar 

  12. Sheetz MP, Wayne DB, Pearlman AL (1992) Extension of filopodia by motor-dependent actin assembly. Cell Motil Cytoskelet 22:160–169

    CAS  Google Scholar 

  13. Hanna SJ et al (2017) The role of Rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Sci Rep 7:8547

    PubMed  PubMed Central  Google Scholar 

  14. Isogai T et al (2015) Initiation of lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex. J Cell Sci 128:3796–3810

    CAS  PubMed  Google Scholar 

  15. Vinzenz M et al (2012) Actin branching in the initiation and maintenance of lamellipodia. J Cell Sci 125:2775–2785

    CAS  PubMed  Google Scholar 

  16. Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YL (1985) Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J Cell Biol 101:597–602

    CAS  PubMed  Google Scholar 

  18. Bugyi B, Carlier MF (2010) Control of actin filament treadmilling in cell motility. Annu Rev Biophys 39:449–470

    CAS  PubMed  Google Scholar 

  19. Euteneuer U, Schliwa M (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310:58–61

    CAS  PubMed  Google Scholar 

  20. Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1:761–772

    CAS  PubMed  Google Scholar 

  21. Smith SJ (1988) Neuronal cytomechanics: the actin-based motility of growth cones. Science 242:708–715

    CAS  PubMed  Google Scholar 

  22. Martins GG, Kolega J (2012) A role for microtubules in endothelial cell protrusion in three-dimensional matrices. Biol Cell 104:271–286

    CAS  PubMed  Google Scholar 

  23. Atkin-Smith GK, Poon IK (2016) Disassembly of the dying: mechanisms and functions. Trends Cell Biol 27:151–162

    PubMed  Google Scholar 

  24. Atkin-Smith GK et al (2015) A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun 6:7439

    PubMed  Google Scholar 

  25. Moss DK et al (2006) A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J Cell Sci 119:2362–2374

    CAS  PubMed  Google Scholar 

  26. Poon IKH et al (2014) Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature 507:329–334

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tixeira R et al (2017) Defining the morphologic features and products of cell disassembly during apoptosis. Apoptosis 22:475–477

    PubMed  Google Scholar 

  29. Mills JC et al (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140:627–636

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sebbagh M et al (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352

    CAS  PubMed  Google Scholar 

  31. Huot J et al (1998) SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 143:1361–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Coleman ML et al (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345

    CAS  PubMed  Google Scholar 

  33. Tixeira R et al (2019) ROCK1 but not LIMK1 or PAK2 is a key regulator of apoptotic membrane blebbing and cell disassembly. Cell Death Differ. https://doi.org/10.1038/s41418-019-0342-5

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kolomeisky AB, Fisher ME (2001) Force-velocity relation for growing microtubules. Biophys J 80:149–154

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brangbour C et al (2011) Force-velocity measurements of a few growing actin filaments. PLoS Biol 9:e1000613

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Battaglia RA et al (2018) Vimentin on the move: new developments in cell migration. F1000Res 7:1796

    Google Scholar 

  37. Lanier MH, Kim T, Cooper JA (2015) CARMIL2 is a novel molecular connection between vimentin and actin essential for cell migration and invadopodia formation. Mol Biol Cell 26:4577–4588

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chekeni FB et al (2010) Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467:863–867

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Poon IKH et al (2019) Moving beyond size and phosphatidylserine exposure: evidence for a diversity of apoptotic cell-derived extracellular vesicles in vitro. J Extracell Vesicles 8:1608786

    PubMed  PubMed Central  Google Scholar 

  40. Loitto VM et al (2007) Filopodia are induced by aquaporin-9 expression. Exp Cell Res 313:1295–1306

    CAS  PubMed  Google Scholar 

  41. Karlsson T et al (2013) Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions. PLoS One 8:e59901

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Breitsprecher D et al (2011) Cofilin cooperates with fascin to disassemble filopodial actin filaments. J Cell Sci 124:3305–3318

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lane JD, Allan VJ, Woodman PG (2005) Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells. J Cell Sci 118:4059–4071

    CAS  PubMed  Google Scholar 

  44. Sanchez-Alcazar JA et al (2007) The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis. Apoptosis. 12: 1195–1208

    PubMed  Google Scholar 

  45. Jiang L et al (2017) Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sci Rep 7:14444

    PubMed  PubMed Central  Google Scholar 

  46. Onfelt B et al (2004) Cutting edge: Membrane nanotubes connect immune cells. J Immunol 173:1511–1513

    PubMed  Google Scholar 

  47. Heckman CA, Plummer HK 3rd (2013) Filopodia as sensors. Cell Signal 25:2298–2311

    CAS  PubMed  Google Scholar 

  48. Berda-Haddad Y et al (2011) Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1alpha. Proc Natl Acad Sci USA 108:20684–20689

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Brock CK et al (2019) Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nat Commun 10:1044

    PubMed  PubMed Central  Google Scholar 

  50. Ma Q et al (2019) Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J Biol Chem 294:11240–11247

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu Z et al (2017) Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J Leukoc Biol 101:1349–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang L et al (2016) Monitoring the progression of cell death and the disassembly of dying cells by flow cytometry. Nat Protoc 11:655–663

    CAS  PubMed  Google Scholar 

  53. Kueh AJ, Herold MJ (2016) Using CRISPR/Cas9 technology for manipulating cell death regulators. Methods Mol Biol 1419:253–264

    PubMed  Google Scholar 

  54. Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the La Trobe BioImaging Platform for access to microscopy and flow cytometry equipment and assistance with microscopy. We thank Dr Hendrika Duivenvoorden for her assistance with 3D cultures. This work was supported by grants from the National Health & Medical Research Council of Australia (GNT1141732, GNT1125033, GNT1140187), Australian Research Council (DP170103790) and La Trobe University (RFA2018).

Author information

Authors and Affiliations

Authors

Contributions

SC, GKAS and IKHP designed and performed experiments with assistance from co-authors. AB generated and performed experiments on vimentin deficient cells. SC, GKAS and IKHP wrote the manuscript with input from co-authors.

Corresponding author

Correspondence to Ivan K. H. Poon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: a typographical error in the fourth author name has been corrected.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, S., Atkin-Smith, G.K., Baxter, A.A. et al. Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis. Apoptosis 24, 862–877 (2019). https://doi.org/10.1007/s10495-019-01565-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01565-5

Keywords

Navigation