Skip to main content

Advertisement

Log in

Baculovirus-based gene silencing of Humanin for the treatment of pituitary tumors

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pituitary tumors are the most common primary intracranial neoplasms. Humanin (HN) and Rattin (HNr), a rat homolog of HN, are short peptides with a cytoprotective action. In the present study, we aimed to evaluate whether endogenous HNr plays an antiapoptotic role in pituitary tumor cells. Thus, we used RNA interference based on short-hairpin RNA (shRNA) targeted to HNr (shHNr). A plasmid including the coding sequences for shHNr and dTomato fluorescent reporter gene was developed (pUC-shHNr). Transfection of somatolactotrope GH3 cells with pUC-shHNr increased apoptosis, suggesting that endogenous HNr plays a cytoprotective role in pituitary tumor cells. In order to evaluate the effect of blockade of endogenous HNr expression in vivo, we constructed a recombinant baculovirus (BV) encoding shHNr (BV-shHNr). In vitro, BV-shRNA was capable of transducing more than 80% of GH3 cells and decreased HNr mRNA. Also, BV-shHNr increased apoptosis in transduced GH3 cells. Intratumor injection of BV-shHNr to nude mice bearing s.c. GH3 tumors increased the number of apoptotic cells, delayed tumor growth and enhanced survival rate, suggesting that endogenous HNr may be involved in pituitary tumor progression. These preclinical data suggests that the silencing of HN expression could have a therapeutic impact on the treatment of pituitary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Melmed S (2009) Acromegaly pathogenesis and treatment. J Clin Invest 119:3189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112:1603–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gillam MP, Molitch ME, Lombardi G, Colao A (2006) Advances in the treatment of prolactinomas. Endocr Rev 27:485–534

    Article  CAS  PubMed  Google Scholar 

  4. Benveniste RJ, King WA, Walsh J, Lee JS, Delman BN, Post KD (2005) Repeated transsphenoidal surgery to treat recurrent or residual pituitary adenoma. J Neurosurg 102:1004–1012

    Article  PubMed  Google Scholar 

  5. Osamura RY, Kajiya H, Takei M et al (2008) Pathology of the human pituitary adenomas. Histochem Cell Biol 130:495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gottardo MF, Jaita G, Magri ML et al (2014) Antiapoptotic factor humanin is expressed in normal and tumoral pituitary cells and protects them from TNF-alpha-induced apoptosis. PLoS ONE 9:e111548

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gottardo MF, Moreno Ayala M, Ferraris J et al (2017) Humanin inhibits apoptosis in pituitary tumor cells through several signaling pathways including NF-kappaB activation. J Cell Commun Signal 11:329–340

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hashimoto Y, Niikura T, Ito Y et al (2001) Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults. J Neurosci 21:9235–9245

    CAS  PubMed  Google Scholar 

  9. Hashimoto Y, Niikura T, Tajima H et al (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA 98:6336–6341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niikura T, Tajima H, Kita Y (2006) Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Curr Neuropharmacol 4:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zapala B, Kaczynski L, Kiec-Wilk B et al (2010) Humanins, the neuroprotective and cytoprotective peptides with antiapoptotic and anti-inflammatory properties. Pharmacol Rep 62: 767–777

    Article  CAS  PubMed  Google Scholar 

  12. Niikura T, Hashimoto Y, Tajima H et al (2003) A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci 17:1150–1158

    Article  PubMed  Google Scholar 

  13. Jia Y, Ohanyan A, Lue YH et al (2015) The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs. Apoptosis 20:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lue Y, Swerdloff R, Liu Q et al (2010) Opposing roles of insulin-like growth factor binding protein 3 and humanin in the regulation of testicular germ cell apoptosis. Endocrinology 151:350–357

    Article  CAS  PubMed  Google Scholar 

  15. Gong Z, Tas E, Muzumdar R (2014) Humanin and age-related diseases: a new link? Front Endocrinol 5:210

    Article  Google Scholar 

  16. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lambeth LS, Smith CA (2013) Short hairpin RNA-mediated gene silencing. Methods Mol Biol 942:205–232

    Article  CAS  PubMed  Google Scholar 

  18. Snove O Jr, Rossi JJ (2006) Expressing short hairpin RNAs in vivo. Nat Methods 3:689–695

    Article  CAS  PubMed  Google Scholar 

  19. Pidre ML, Ferrelli ML, Haase S, Romanowski V (2013) Baculovirus display: a novel tool for vaccination. In: Romanowski V (ed) Biochemistry genetics and molecular biology. Intech, Rijeka, pp 137–164

    Google Scholar 

  20. Hu YC (2008) Baculoviral vectors for gene delivery: a review. Curr Gene Ther 8:54–65

    Article  CAS  PubMed  Google Scholar 

  21. Kwang TW, Zeng X, Wang S (2016) Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials. Mol Ther Methods Clin Dev 3:15050

    Article  PubMed  PubMed Central  Google Scholar 

  22. Je YH, Chang JH, Choi JY et al (2001) A defective viral genome maintained in Escherichia coli for the generation of baculovirus expression vectors. Biotech Lett 23:575–582

    Article  CAS  Google Scholar 

  23. Haase S, McCarthy CB, Ferrelli ML, Pidre ML, Sciocco-Cap A, Romanowski V (2015) Development of a recombination system for the generation of occlusion positive genetically modified Anticarsia gemmatalis multiple nucleopolyhedrovirus. Viruses 7:1599–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferraris J, Boutillon F, Bernadet M, Seilicovich A, Goffin V, Pisera D (2012) Prolactin antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression. J Physiol Endocrinol Metab 302:E356–E364

    Article  CAS  Google Scholar 

  25. Ferraris J, Zárate S, Jaita G, Boutillon F, Bernadet M, Auffret J, Seilicovich A, Binart N, Goffin V, Pisera D (2014) Prolactin induces apoptosis of lactotropes in female rodents. PLoS ONE 9:e97383

    Article  PubMed  PubMed Central  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  27. Candolfi M, Jaita G, Zaldivar V, Zárate S, Ferrari L, Pisera D, Castro MG, Seilicovich A (2005) Progesterone antagonizes the permissive action of estradiol on tumor necrosis factor-alpha-induced apoptosis of anterior pituitary cells. Endocrinology 146(2):736–743

    Article  CAS  PubMed  Google Scholar 

  28. Candolfi M, Jaita G, Pisera D, Ferrari L, Barcia C, Lui JC, Castro MG, Seilicovich A (2006). Adenoviral vectors encoding tumor necrosis factor-alpha and FasL induce apoptosis of normal and tumoral anterior pituitary cells. J Endocrinol 189(3):681–690

    Article  CAS  PubMed  Google Scholar 

  29. Mottaghi-Dastjerdi N, Soltany-Rezaee-Rad M, Sepehrizadeh Z, Roshandel G, Ebrahimifard F, Setayesh N (2014) Genome expression analysis by suppression subtractive hybridization identified overexpression of Humanin, a target gene in gastric cancer chemoresistance. Daru 22:14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Matsuoka M, Hashimoto Y (2010) Humanin and the receptors for humanin. Mol Neurobiol 41:22–28

    Article  CAS  PubMed  Google Scholar 

  31. Yen K, Lee C, Mehta H, Cohen P (2013) The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J Mol Endocrinol 50:R11–R19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niikura T, Chiba T, Aiso S, Matsuoka M, Nishimoto I (2004) Humanin: after the discovery. Mol Neurobiol 30:327–340

    Article  CAS  PubMed  Google Scholar 

  33. Eriksson E, Wickstrom M, Perup LS et al (2014) Protective role of humanin on bortezomib-induced bone growth impairment in anticancer treatment. J Natl Cancer Inst https://doi.org/10.1093/jnci/djt459

    PubMed Central  Google Scholar 

  34. Surampudi P, Chang I, Lue Y et al (2015) Humanin protects against chemotherapy-induced stage-specific male germ cell apoptosis in rats. Andrology 3:582–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen P (2014) New role for the mitochondrial peptide humanin: protective agent against chemotherapy-induced side effects. J Natl Cancer Inst 106:dju006

    Article  PubMed  PubMed Central  Google Scholar 

  36. Felberbaum RS (2015) The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 10:702–714

    Article  CAS  PubMed  Google Scholar 

  37. Makkonen KE, Airenne K, Yla-Herttulala S (2015) Baculovirus-mediated gene delivery and RNAi applications. Viruses 7:2099–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luo WY, Shih YS, Lo WH et al (2011) Baculovirus vectors for antiangiogenesis-based cancer gene therapy. Cancer Gene Ther 18:637–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Tecnológicas, National Research Council (PIP 11420110100353 to M.C.; PIP 11220120100261 to A.S, doctoral fellowships to MFG, MP, ASA), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013-0310, PICT-2015-3309 to M.C.; PICT 2014-0334 to A.S.; PICT 2014-1827 to V.R., doctoral fellowship to CZ), the University of Buenos Aires (20020130100020 to A.S.) and the National University of La Plata (X703 to V.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Seilicovich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Ethics Committee of the School of Medicine, University of Buenos Aires.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Generation of recombinant baculovirus for delivery of shRNAs in mammalian cells. Representative images of Sf9 insect cells co-transfected with bAcGoza bacmid and the plasmid pBacPAK9-shHNr; observation made at 96 h post-transfection. Left panel: DAPI; medium panel: cells with recombinant baculovirus expressing dTomato protein; right panel: cells infected with recombinant baculovirus BV-shHNr observed under phase contrast microscopy (TIF 124 KB)

Supplementary Fig. 2

Transfection efficiency of the plasmid with HNr interfering RNA. GH3 cells were transfected with 1 μg of plasmid DNA pUC-shHNr, incubated for 16, 24 or 48 h and processed for the detection of HNr by immunofluorescence. (a) Representative microphotographs of transfected cells. Arrows indicate transfected cells showing dTomato and HNr expression. Nuclei were counterstained with DAPI. Left panels: DAPI; medium panels: HNr; right panels: dTomato. (b) Percentage of transfected (dTomato-positive) cells. Each column represents the percentage ± CL of dTomato-positive GH3 cells (n ≥ 1000 cells/group) (TIF 143 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottardo, M.F., Pidre, M.L., Zuccato, C. et al. Baculovirus-based gene silencing of Humanin for the treatment of pituitary tumors. Apoptosis 23, 143–151 (2018). https://doi.org/10.1007/s10495-018-1444-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1444-0

Keywords

Navigation