Skip to main content
Log in

A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

sRAGE can protect cardiomyocytes from apoptosis induced by ischemia/reperfusion (I/R). However, the signaling mechanisms in cardioprotection by sRAGE are currently unknown. We investigated the cardioprotective effect and potential molecular mechanisms of sRAGE inhibition on apoptosis in the mouse myocardial I/R as an in vivo model and neonatal rat cardiomyocyte subjected to ischemic buffer as an in vitro model. Cardiac function and myocardial infarct size following by I/R were evaluated with echocardiography and Evans blue/2,3,5-triphenyltetrazolium chloride. Apoptosis was detected by TUNEL staining and caspase-3 activity. Expression of the apoptosis-related proteins p53, Bax, Bcl-2, JAK2/p-JAK2, STAT3/p-STAT3, AKT/p-AKT, ERK/p-ERK, STAT5A/p-STAT5A and STAT6/p-STAT6 were detected by western blot analysis in the presence and absence of the JAK2 inhibitor AG 490. sRAGE (100 µg/day) improved the heart function in mice with I/R: the left ventricular ejection fraction and fractional shortening were increased by 42 and 57 %, respectively; the infarct size was decreased by 52 %, the TUNEL-positive myocytes by 66 %, and activity of caspase-3 by 24 %, the protein expression of p53 and ratio of Bax to Bcl-2 by 29 and 88 %, respectively; protein expression of the p-JAK2, p-STAT3 and p-AKT were increased by 92, 280 and 31 %, respectively. sRAGE have no effect on protein expression of p-ERK1/2, p-STAT5A and p-STAT6 following by I/R. sRAGE (900 nmol/L) exhibited anti-apoptotic effects in cardiomyocytes by decreasing TUNEL-positive myocytes by 67 % and caspase-3 activity by 20 %, p53 protein level and the Bax/Bcl-2 ratio by 58 and 86 %, respectively; increasing protein expression of the p-JAK2 and p-STAT3 by 26 and 156 %, respectively, p-AKT protein level by 33 %. The anti-apoptotic effects of sRAGE following I/R were blocked by JAK2 inhibitor AG 490. The effect of sRAGE reduction on TUNEL-positive myocytes and caspase-3 activity were abolished by PI3K inhibitor LY294002, but not ERK 1/2 inhibitor PD98059. These results suggest that sRAGE protects cardiomyocytes from apoptosis induced by I/R in vitro and in vivo by activating the JAK2/STAT3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

sRAGE:

Soluble receptor for advanced glycation end-products

I/R:

Ischemia/reperfusion

JAK/STAT:

Janus kinase/signal transducer and activator of transcription

JAK2:

Janus activated kinase 2

STAT3:

Signal transducer and activator of transcription 3

RAGE:

Receptor for advanced glycation end-products

EF:

Ejection fraction

FS:

Fractional shortening

LV:

Left ventricular

ERK ½:

Extracellular signal-regulated kinase 1/2

PI3K:

Phosphatidylinositol 3 kinase

AKT:

Protein kinase B

TTC:

2,3,5-Triphenyltetrazolium chloride

TUNEL:

Terminal deoxynucleotidyl transferase-mediated nick end label

Bax:

Bcl-2-associated X protein

Bcl-2:

B-cell lymphoma 2

DMEM:

Dulbecco’s modified eagle medium

DMSO:

Dimethyl sulfoxide

FBS:

Fatal bovine serum

PBS:

Phosphate buffer saline

References

  1. Ma HJ, Li Q, Guan Y, Shi M, Yang J, Li DP, Zhang Y (2014) Chronic intermittent hypobaric hypoxia ameliorates ischemia/reperfusion-induced calcium overload in heart via Na/Ca2+ exchanger in developing rats. Cell Physiol Biochem 34(2):313–324

    Article  CAS  PubMed  Google Scholar 

  2. Matsushima S, Tsutsui H, Sadoshima J (2014) Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc Med 24(5):202–205

    Article  CAS  PubMed  Google Scholar 

  3. Braunersreuther V, Montecucco F, Asrih M, Pelli G, Galan K, Frias M, Burger F, Quindere AL, Montessuit C, Krause KH, Mach F, Jaquet V (2013) Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 64:99–107

    Article  CAS  PubMed  Google Scholar 

  4. Cash JL, Bena S, Headland SE, McArthur S, Brancaleone V, Perretti M (2013) Chemerin15 inhibits neutrophil-mediated vascular inflammation and myocardial ischemia-reperfusion injury through ChemR23. EMBO Rep 14(11):999–1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Orogo AM, Gustafsson AB (2013) Cell death in the myocardium: my heart won’t go on. IUBMB Life 65(8):651–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Marongiu E, Crisafulli A (2014) Cardioprotection acquired through exercise: the role of ischemic preconditioning. Curr Cardiol Rev 10(4):336–348

    Article  PubMed  Google Scholar 

  7. Buchholz B, Donato M, D’Annunzio V, Gelpi RJ (2014) Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem 392(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt MR, Pryds K, Botker HE (2014) Novel adjunctive treatments of myocardial infarction. World J Cardiol 6(6):434–443

    Article  PubMed Central  PubMed  Google Scholar 

  9. Falcone C, Bozzini S, Guasti L, D’Angelo A, Capettini AC, Paganini EM, Falcone R, Moia R, Gazzaruso C, Pelissero G (2013) Soluble RAGE plasma levels in patients with coronary artery disease and peripheral artery disease. ScientificWorldJournal 2013:584504

    Article  PubMed Central  PubMed  Google Scholar 

  10. Basta G (2008) Receptor for advanced glycation endproducts and atherosclerosis: from basic mechanisms to clinical implications. Atherosclerosis 196(1):9–21

    Article  CAS  PubMed  Google Scholar 

  11. Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22(10):3716–3727

    Article  CAS  PubMed  Google Scholar 

  12. Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25(11):2185–2197

    Article  CAS  PubMed  Google Scholar 

  13. Yan SF, Ramasamy R, Schmidt AM (2010) Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol 79(10):1379–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Maillard-Lefebvre H, Boulanger E, Daroux M, Gaxatte C, Hudson BI, Lambert M (2009) Soluble receptor for advanced glycation end products: a new biomarker in diagnosis and prognosis of chronic inflammatory diseases. Rheumatology (Oxford) 48(10):1190–1196

    Article  Google Scholar 

  15. Mahajan N, Malik N, Bahl A, Sharma Y, Dhawan V (2009) Correlation among soluble markers and severity of disease in non-diabetic subjects with pre-mature coronary artery disease. Mol Cell Biochem 330(1–2):201–209

    Article  CAS  PubMed  Google Scholar 

  16. Lu L, Zhang Q, Xu Y, Zhu ZB, Geng L, Wang LJ, Jin C, Chen QJ, Schmidt AM, Shen WF (2010) Intra-coronary administration of soluble receptor for advanced glycation end-products attenuates cardiac remodeling with decreased myocardial transforming growth factor-beta1 expression and fibrosis in minipigs with ischemia-reperfusion injury. Chin Med J (Engl) 123(5):594–598

    Google Scholar 

  17. Nakamura K, Adachi H, Matsui T, Kurita Y, Takeuchi M, Yamagishi S (2009) Independent determinants of soluble form of receptor for advanced glycation end products in elderly hypertensive patients. Metabolism 58(3):421–425

    Article  CAS  PubMed  Google Scholar 

  18. Guo C, Zeng X, Song J, Zhang M, Wang H, Xu X, Du F, Chen B (2012) A soluble receptor for advanced glycation end-products inhibits hypoxia/reoxygenation-induced apoptosis in rat cardiomyocytes via the mitochondrial pathway. Int J Mol Sci 13(9):11923–11940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Xuan YT, Guo Y, Han H, Zhu Y, Bolli R (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 98(16):9050–9055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, Song F, Bakr S, Szabolcs M, D’Agati V, Liu R, Homma S, Schmidt AM, Yan SF, Ramasamy R (2008) RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am J Physiol Heart Circ Physiol 294(4):H1823–1832

    Article  CAS  PubMed  Google Scholar 

  21. Pan Z, Sun X, Ren J, Li X, Gao X, Lu C, Zhang Y, Sun H, Wang Y, Wang H, Wang J, Xie L, Lu Y, Yang B (2012) miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models. PLoS ONE 7(11):e50515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shang L, Ananthakrishnan R, Li Q, Quadri N, Abdillahi M, Zhu Z, Qu W, Rosario R, Toure F, Yan SF, Schmidt AM, Ramasamy R (2010) RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways. PLoS ONE 5(4):e10092

    Article  PubMed Central  PubMed  Google Scholar 

  23. Song JQ, Teng X, Cai Y, Tang CS, Qi YF (2009) Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1-53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis 14(9):1061–1069

    Article  CAS  PubMed  Google Scholar 

  24. Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280(13):12944–12955

    Article  CAS  PubMed  Google Scholar 

  25. Smith CC, Dixon RA, Wynne AM, Theodorou L, Ong SG, Subrayan S, Davidson SM, Hausenloy DJ, Yellon DM (2010) Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol 299(4):H1265–1270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kui L, Weiwei Z, Ling L, Daikun H, Guoming Z, Linuo Z, Renming H (2009) Ghrelin inhibits apoptosis induced by high glucose and sodium palmitate in adult rat cardiomyocytes through the PI3K-Akt signaling pathway. Regul Pept 155(1–3):62–69

    Article  PubMed  Google Scholar 

  27. Toldo S, Seropian IM, Mezzaroma E, Van Tassell BW, Salloum FN, Lewis EC, Voelkel N, Dinarello CA, Abbate A (2011) Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 51(2):244–251

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, Marden JJ, Fan C, Sanlioglu S, Weiss RM, Ritchie TC, Davisson RL, Engelhardt JF (2003) Genetic redox preconditioning differentially modulates AP-1 and NF kappa B responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis. Mol Ther 7(3):341–353

    Article  CAS  PubMed  Google Scholar 

  29. Yin T, Hou R, Liu S, Lau WB, Wang H, Tao L (2010) Nitrative inactivation of thioredoxin-1 increases vulnerability of diabetic hearts to ischemia/reperfusion injury. J Mol Cell Cardiol 49(3):354–361

    Article  CAS  PubMed  Google Scholar 

  30. Wang K, Zhang J, Liu J, Tian J, Wu Y, Wang X, Quan L, Xu H, Wang W, Liu H (2013) Variations in the protein level of Omi/HtrA2 in the heart of aged rats may contribute to the increased susceptibility of cardiomyocytes to ischemia/reperfusion injury and cell death : Omi/HtrA2 and aged heart injury. Age (Dordr) 35(3):733–746

    Article  Google Scholar 

  31. Yang K, Zhang TP, Tian C, Jia LX, Du J, Li HH (2012) Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling. Am J Hypertens 25(9):994–1001

    Article  CAS  PubMed  Google Scholar 

  32. Qian W, Xiong X, Fang Z, Lu H, Wang Z (2014) Protective effect of tetramethylpyrazine on myocardial ischemia-reperfusion injury. Evid Based Complement Alternat Med 2014:107501

    Article  PubMed Central  PubMed  Google Scholar 

  33. Badalzadeh R, Yousefi B, Majidinia M, Ebrahimi H (2014) Anti-arrhythmic effect of diosgenin in reperfusion-induced myocardial injury in a rat model: activation of nitric oxide system and mitochondrial K channel. J Physiol Sci 64(6):393–400

    Article  CAS  PubMed  Google Scholar 

  34. Rosano GM, Fini M, Caminiti G, Barbaro G (2008) Cardiac metabolism in myocardial ischemia. Curr Pharm Des 14(25):2551–2562

    Article  CAS  PubMed  Google Scholar 

  35. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79(5):949–956

    Article  CAS  PubMed  Google Scholar 

  36. Long X, Boluyt MO, Hipolito ML, Lundberg MS, Zheng JS, O’Neill L, Cirielli C, Lakatta EG, Crow MT (1997) p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 99(11):2635–2643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Toth A, Nickson P, Qin LL, Erhardt P (2006) Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem 281(6):3679–3689

    Article  CAS  PubMed  Google Scholar 

  38. Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C (2002) Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Res 62(16):4592–4598

    CAS  PubMed  Google Scholar 

  39. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  CAS  PubMed  Google Scholar 

  40. Patel JR, Brewer GJ (2008) Age-related differences in NFkappaB translocation and Bcl-2/Bax ratio caused by TNFalpha and Abeta42 promote survival in middle-age neurons and death in old neurons. Exp Neurol 213(1):93–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA, Das DK (2001) Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33(11):1929–1936

    Article  CAS  PubMed  Google Scholar 

  42. Tian Y, Zhang W, Xia D, Modi P, Liang D, Wei M (2011) Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway. J Biomed Sci 18:53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Imada K, Leonard WJ (2000) The Jak-STAT pathway. Mol Immunol 37(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  44. Brisslert M, Amu S, Pullerits R (2013) Intra-peritoneal sRAGE treatment induces alterations in cellular distribution of CD19(+), CD3(+) and Mac-1(+) cells in lymphoid organs and peritoneal cavity. Cell Tissue Res 351(1):139–148

    Article  CAS  PubMed  Google Scholar 

  45. Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 12(3–4):217–234

    Article  CAS  PubMed  Google Scholar 

  46. Bucciarelli LG, Ananthakrishnan R, Hwang YC, Kaneko M, Song F, Sell DR, Strauch C, Monnier VM, Yan SF, Schmidt AM, Ramasamy R (2008) RAGE and modulation of ischemic injury in the diabetic myocardium. Diabetes 57(7):1941–1951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Goodman MD, Koch SE, Fuller-Bicer GA, Butler KL (2008) Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol 295(4):H1649–1656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 30801217, 81370313), Beijing Nova Program (Grant No. 2010B050) and Beijing Health System High Level Health Technical Personnel Training Program (Grant No. 2013-3-046).

Conflict of interest

We have no competing interest and conflict interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cai-xia Guo or Feng-he Du.

Additional information

Xue Jiang and Cai-xia Guo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Guo, Cx., Zeng, Xj. et al. A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway. Apoptosis 20, 1033–1047 (2015). https://doi.org/10.1007/s10495-015-1130-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1130-4

Keywords

Navigation