Skip to main content

Advertisement

Log in

Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CDDP:

cis-diamminedichloroplatinum, cisplatin

HFDPC:

Human hair follicle dermal papilla cells

ROS:

Reactive oxygen species

hROS:

Highly reactive oxygen species

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

zVAD-fmk:

Benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone

NAC:

N-acetyl cysteine

GSH:

Reduced glutathione

H2DCF-DA:

Dihydrodichlorofluorescein diacetate

HPF:

Hydroxyphenyl fluorescein

CAT:

Catalase

MnTBAP:

Mn(III)tetrakis(4-benzoic acid) porphyrin chloride

NaFM:

Sodium formate

Pro-C3:

Pro-caspase-3

LAC:

Lactacystin

CMA:

Concanamycin A

Ub:

Ubiquitin

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Trueb RM (2009) Chemotherapy-induced alopecia. Semin Cutan Med Surg 28:11–14. doi:10.1016/j.sder.2008.12.001

    Article  PubMed  CAS  Google Scholar 

  2. Carelle N, Piotto E, Bellanger A, Germanaud J, Thuillier A, Khayat D (2002) Changing patient perceptions of the side effects of cancer chemotherapy. Cancer 95:155–163. doi:10.1002/cncr.10630

    Article  PubMed  Google Scholar 

  3. Wang J, Lu Z, Au JLS (2006) Protection against chemotherapy-induced alopecia. Pharm Res 23:2505–2514. doi:10.1007/s11095-006-9105-3

    Article  PubMed  CAS  Google Scholar 

  4. Botchkarev VA (2003) Molecular mechanisms of chemotherapy-induced hair loss. J Investig Dermatol Symp Proc 8:72–75. doi:10.1046/j.1523-1747.2003.12175.x

    Article  PubMed  CAS  Google Scholar 

  5. Jimenez JJ, Roberts SM, Mejia J, Lucia M, Mauro LM, Munson JW et al (2008) Prevention of chemotherapy-induced alopecia in rodent models. Cell Stress Chaperones 13:31–38. doi:10.1007/s12192-007-0005-1

    Article  PubMed  CAS  Google Scholar 

  6. Bodo E, Tobin DJ, Kamenisch Y, Biro T, Berneburg M, Funk W et al (2007) Dissecting the impact of chemotherapy on the human hair follicle: a pragmatic in vitro assay for studying the pathogenesis and potential management of hair follicle dystrophy. Am J Pathol 171:1153–1167. doi:10.2353/ajpath.2007.061164

    Article  PubMed  CAS  Google Scholar 

  7. Apisarnthanarax N, Duvic M (2000) Dermatologic complications of cancer chemotherapy. In: Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei E (eds) Holland-Frei cancer medicine, 5th edn. BC Decker, Hamilton, pp 2271–2278

    Google Scholar 

  8. Mijajima A, Nakashima J, Yoshioka K, Tachibana M, Tazaki H, Murai M (1997) Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity in bladder cancer cells. Br J Cancer 76:206–210. doi:10.1038/bjc.1997.363

    Article  Google Scholar 

  9. Wang L, Chanvorachote P, Toledo D, Stehlik C, Mercer RR, Castranova V et al (2008) Peroxide is a key mediator of Bcl-2 down-regulation and apoptosis induction by cisplatin in human lung cancer cells. Mol Pharmacol 73:119–127. doi:10.1124/mol.107.040873

    Article  PubMed  CAS  Google Scholar 

  10. Clerici WJ, Hensley K, DiMartino DL, Butterfield DA (1996) Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res 98:116–124. doi:10.1016/0378-5955(96)00075-5

    Article  PubMed  CAS  Google Scholar 

  11. Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226:157–167. doi:10.1016/j.heares.2006.09.015

    Article  PubMed  CAS  Google Scholar 

  12. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007. doi:10.1038/sj.ki.5002786

    Article  PubMed  CAS  Google Scholar 

  13. Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP (2000) Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense systems. Pharmacol Toxicol 86:234–241. doi:10.1034/j.1600-0773.2000.pto860507.x

    Article  PubMed  CAS  Google Scholar 

  14. Jiang M, Wei Q, Pabla N, Dong G, Wang CY, Yang T et al (2007) Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis, and nephrotoxicity. Biochem Pharmacol 73:1499–1510. doi:10.1016/j.bcp.2007.01.010

    Article  PubMed  CAS  Google Scholar 

  15. Santos NA, Bezerra CS, Martins NM, Curti C, Bianhi ML, Santos AC (2008) Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Cancer Chemother Pharmacol 61:145–155. doi:10.1007/s00280-007-0459-y

    Article  PubMed  CAS  Google Scholar 

  16. Wu YJ, Muldoon LL, Neuwelt EA (2005) The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J Pharmacol Exp Ther 312:424–431. doi:10.1124/jpet.104.075119

    Article  PubMed  CAS  Google Scholar 

  17. Li P, Nijhawan D, Budihardjo I, Srinivasula S, Ahmad M, Alnemri E et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489. doi:10.1016/S0092-8674(00)80434-1

    Article  PubMed  CAS  Google Scholar 

  18. Gupta S (2003) Molecular signaling in death receptor and mitochondrial pathways of apoptosis. Int J Oncol 22:15–20

    PubMed  CAS  Google Scholar 

  19. Korsmeyer SJ, Yin XM, Oltvai ZN, Veis-Novack DJ, Linette GP (1995) Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochim Biophys Acta 1271:63–66. doi:10.1016/0925-4439(95)00011-R

    PubMed  Google Scholar 

  20. Martin SS, Vuori K (2004) Regulation of Bcl-2 proteins during anoikis and amorphosis. Biochim Biophys Acta 1692:145–157. doi:10.1016/j.bbamcr.2004.02.008

    Article  PubMed  CAS  Google Scholar 

  21. Muller-Rover S, Rossiter H, Lindner G, Peters EMJ, Kupper TS, Paus R (1999) Hair follicle apoptosis and Bcl-2. J Investig Dermatol Symp Proc 4:272–277. doi:10.1038/sj.jidsp.5640228

    Article  PubMed  CAS  Google Scholar 

  22. Botchkareva NV, Ahluwalia G, Shander D (2006) Apoptosis in the hair follicle. J Invest Dermatol 126:258–264. doi:10.1038/sj.jid.5700007

    Article  PubMed  CAS  Google Scholar 

  23. Yang X, Zheng F, Xing H, Gao Q, Wei W, Lu Y et al (2004) Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer. Cancer Res Clin Oncol 130:423–428. doi:10.1158/0008-5472.CAN-10-1352

    Article  CAS  Google Scholar 

  24. Kausch I, Jiang H, Thode B, Doehn C, Kruger S, Joeham D (2005) Inhibition of Bcl-2 enhances the efficacy of chemotherapy in renal cell carcinoma. Eur Urol 47:703–709. doi:10.1016/j.eururo.2004.11.013

    Article  PubMed  CAS  Google Scholar 

  25. Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM (1999) Dephosphorylationtargets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 189:1815–1822. doi:10.1084/jem.189.11.1815

    Article  PubMed  CAS  Google Scholar 

  26. Chanvorachote P, Nimmannit U, Stehlik C, Wang L, Jiang BH, Ongpipatanakul B et al (2006) Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res 66:6353–6360. doi:10.1158/0008-5472.CAN-05-4533

    Article  PubMed  CAS  Google Scholar 

  27. Haendeler J, Messmer UK, Brune B, Neugebauer E, Dimmeler S (1996) Endotoxic shock leads to apoptosis in vivo and reduces Bcl-2. Shock 6:405–409

    Article  PubMed  CAS  Google Scholar 

  28. Azad N, Iyer AKV, Manosroi A, Wang L, Rojanasakul Y (2008) Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis. Carcinogenesis 29:1538–1545. doi:10.1093/carcin/bgn137

    Article  PubMed  CAS  Google Scholar 

  29. Inui S, Itami S, Pan HJ, Chang C (2000) Lack of androgen receptor transcriptional activity in human keratinocytes. J Dermatol Sci 23:87–92. doi:10.1016/s0923-1811(99)00091-2

    Article  PubMed  CAS  Google Scholar 

  30. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes than can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175. doi:10.1074/jbc.M209264200

    Article  PubMed  CAS  Google Scholar 

  31. Beckman JC, Beckman TW, Chen J, Marshall PA, Freeman BA (1997) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  Google Scholar 

  32. Zhang H, Joseph J, Feix J, Hogg N, Kalyanaraman B (2001) Nitration and oxidation of a hydrophobic tyrosine probe by peroxynitrite in membranes: comparison with nitration and oxidation of tyrosine by peroxynitrite in aqueous solution. Biochemistry 40:7675–7686. doi:10.1021/bi002958c

    Article  PubMed  CAS  Google Scholar 

  33. Park MS, Leon MD, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865

    Article  PubMed  CAS  Google Scholar 

  34. Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15. doi:10.1126/science.281.5381.1309

    Article  PubMed  CAS  Google Scholar 

  35. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria. Genes Cell 3:697–707. doi:10.1046/j.1365-2443.1998.00223.x

    Article  CAS  Google Scholar 

  36. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  PubMed  CAS  Google Scholar 

  37. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. doi:10.1080/01926230701320337

    Article  PubMed  CAS  Google Scholar 

  38. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–86. doi:10.1038/nrm1552

    Article  PubMed  CAS  Google Scholar 

  39. Lecker SW, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasomal pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819. doi:10.1681/ASN.2006010083

    Article  PubMed  CAS  Google Scholar 

  40. McFadden SL, Ding D, Salvemini D, Salvi RJ (2003) M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity. Toxicol Appl Pharmacol 186:46–54. doi:10.1016/S0041-008X(02)00017-0

    Article  PubMed  CAS  Google Scholar 

  41. Li D, Ueta E, Kimura T, Yamamoto T, Osaki T (2004) Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci 95:644–650. doi:10.1111/j.1349-7006.2004.tb03323.x

    Article  PubMed  CAS  Google Scholar 

  42. Wang S, Kanorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. J Biol Chem 279:25535–25543. doi:10.1074/jbc.M400944200

    Article  PubMed  CAS  Google Scholar 

  43. Korkmaz A, Topol T, Oter S (2007) Pathophysiological aspects of cyclophosphamide and ifosphamide induced hemorrhagic cystitis; implication of reactive oxygen species and nitrogen species as well as PARP activation. Cell Biol Toxicol 23:303–312. doi:10.1007/s10565-006-0078-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Grant R01-HL76340 (to Y.R.) and the Thailand Research Fund Grant RGJ-5.Q.CU/49/A.1 (to U.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ubonthip Nimmannit or Yon Rojanasakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luanpitpong, S., Nimmannit, U., Chanvorachote, P. et al. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism. Apoptosis 16, 769–782 (2011). https://doi.org/10.1007/s10495-011-0609-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0609-x

Keywords

Navigation