Skip to main content

Advertisement

Log in

Autophagy and apoptosis in planarians

  • Unusual Model Systems for Cell Death Research
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Adult planarians are capable of undergoing regeneration and body remodelling in order to adapt to physical damage or extreme environmental conditions. Moreover, most planarians can tolerate long periods of starvation and during this time, they shrink from an adult size to, and sometimes beyond, the initial size at hatching. Indeed, these properties have made them a classic model to study stem cells and regeneration. Under such stressful conditions, food reserves from the gastrodermis and parenchyma are first used up and later the testes, copulatory organs and ovaries are digested. More surprisingly, when food is again made available to shrunken individuals, they grow back to adult size and all their reproductive structures reappear. These cycles of growth and shrinkage may occur over long periods without any apparent impairment to the individual, or to its future maturation and breeding capacities. This plasticity resides in a mesoderm tissue known as the parenchyma, which is formed by several differentiated non-proliferating cell types and only one mitotically active cell type, the neoblasts, which represent approximately 20–30% of the cells in the parenchyma. Neoblasts are generally thought to be somatic stem-cells that participate in the normal continuous turnover of all cell types in planarians. Hence, planarians are organisms that continuously adapt their bodies (morphallaxis) to different environmental stresses (i.e.: injury or starvation). This adaptation involves a variety of processes including proliferation, differentiation, apoptosis and autophagy, all of which are perfectly orchestrated and tightly regulated to remodel or restore the body pattern. While neoblast biology and body re-patterning are currently the subject of intense research, apoptosis and autophagy remain much less studied. In this review we will summarize our current understanding and hypotheses regarding where and when apoptosis and autophagy occur and fulfil an essential role in planarians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    PubMed  Google Scholar 

  2. Hyman L (1951) The Invertebrates: Platyhelminthes and Rhynchocoela— The Acoelomate Bilateria. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  3. Baguñà J, Saló E, Auladell C (1989) Regeneration and pattern formation in planarians III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107:77–86

    Google Scholar 

  4. Saló E (2006) The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). Bioessays 28:546–559

    PubMed  Google Scholar 

  5. Rossi L, Salvetti A, Batistoni R, Deri P, Gremigni V (2008) Planarians, a tale of stem cells. Cell Mol Life Sci 65:16–23

    PubMed  Google Scholar 

  6. Sanchez Alvarado A (2006) Planarian regeneration: its end is its beginning. Cell 124:241–245

    PubMed  Google Scholar 

  7. Reddien PW, Sanchez Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757

    PubMed  Google Scholar 

  8. Cebria F (2007) Regenerating the central nervous system: how easy for planarians!. Dev Genes Evol 217:733–748

    PubMed  Google Scholar 

  9. Umesono Y, Agata K (2009) Evolution and regeneration of the planarian central nervous system. Dev Growth Differ 51:185–195

    PubMed  Google Scholar 

  10. Curtis W (1902) The life history, the normal fission, and the reproductive organs of Planaria maculata. Proc Boston Soc Nat Hist 30:515–559

    Google Scholar 

  11. Newmark PA, Wang Y, Chong T (2008) Germ cell specification and regeneration in planarians. Cold Spring Harb Symp Quant Biol 73:573–581

    PubMed  Google Scholar 

  12. Sato K, Shibata N, Orii H et al (2006) Identification and origin of the germline stem cells as revealed by the expression of nanos-related gene in planarians. Dev Growth Differ 48:615–628

    PubMed  Google Scholar 

  13. Handberg-Thorsager M, Fernandez E, Salo E (2008) Stem cells and regeneration in planarians. Front Biosci 13:6374–6394

    PubMed  Google Scholar 

  14. Wang Y, Zayas RM, Guo T, Newmark PA (2007) Nanos function is essential for development and regeneration of planarian germ cells. Proc Natl Acad Sci USA 104:5901–5906

    PubMed  Google Scholar 

  15. Morgan TH (1902) Growth and regeneration in Planaria lugubris. Arch Entw Mech Org 13:179–212

    Google Scholar 

  16. Fedecka-Bruner B (1967) Differentiation of the male gonads in the planarian, Dugesia lugubris, during regeneration. C R Seances Soc Biol Fil 161:21–23

    PubMed  Google Scholar 

  17. Berninger J (1911) Über die Einwirkung des Hungers auf Planarien. Zool Jahrb 30:181–216

    Google Scholar 

  18. Benazzi M, Gremigni V (1982) Developmental biology of triclad turbellarians (Planaria). In: Harrison FW, Cowden RR (eds) Developmental biologogy of freshwater invertebrates. Liss, New York, pp 151–211

    Google Scholar 

  19. Romero R, Baguñà J (1991) Quantitative cellular analysis of growth and reproduction in freshwater planarians (Turbellaria, Tricladida). I. A cellular description of the intact organism. Invertebr Reprod Dev 19:157–165

    Google Scholar 

  20. Baguñà J (1976) Mitosis in the intact and regenerating planarian Dugesia mediterranea n. sp. I. Mitotic studies during growth, feeding and starvation. J Exp Zool 195:53–64

    Google Scholar 

  21. Baguñà J (1976) Mitosis in the intact and regenerating planarian Dugesia mediterranea n. sp. II. Mitotic studies during regeneration and a possible mechanism of blastema formation. J Exp Zool 195:65–80

    Google Scholar 

  22. Morita M, Best JB (1984) Electron microscopic studies of planarian regeneration. IV. Cell division of neoblasts in Dugesia dorotocephala. J Exp Zool 229:425–436

    Google Scholar 

  23. Tiras K, Sakharova NY (1984) The vital computer morphometry of planarian regenration. Ontogenez 15:42–48

    Google Scholar 

  24. Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sanchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–1330

    PubMed  Google Scholar 

  25. Salvetti A, Rossi L, Deri P, Batistoni R (2000) An MCM2-related gene is expressed in proliferating cells of intact and regenerating planarians. Dev Dyn 218:603–614

    PubMed  Google Scholar 

  26. Salvetti A, Lena A, Rossi L et al (2002) Characterization of DeY1, a novel Y-box gene specifically expressed in differentiating male germ cells of planarians. Gene Expr Patterns 2:195–200

    PubMed  Google Scholar 

  27. Salvetti A, Rossi L, Lena A et al (2005) DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132:1863–1874

    PubMed  Google Scholar 

  28. Guo T, Peters AH, Newmark PA (2006) A Bruno-like gene is required for stem cell maintenance in planarians. Dev Cell 11:159–169

    PubMed  Google Scholar 

  29. Solana J, Lasko P, Romero R (2009) Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 328:410–421

    PubMed  Google Scholar 

  30. Orii H, Sakurai T, Watanabe K (2005) Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol 215:143–157

    PubMed  Google Scholar 

  31. Newmark PA, Sanchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    PubMed  Google Scholar 

  32. Hayashi T, Asami M, Higuchi S, Shibata N, Agata K (2006) Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Dev Growth Differ 48:371–380

    PubMed  Google Scholar 

  33. Eisenhoffer GT, Kang H, Sanchez Alvarado A (2008) Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3:327–339

    PubMed  Google Scholar 

  34. Conte M, Deri P, Isolani ME, Mannini L, Batistoni R (2009) A mortalin-like gene is crucial for planarian stem cell viability. Dev Biol 334:109–118

    PubMed  Google Scholar 

  35. Newmark PA, Reddien PW, Cebria F, Sanchez Alvarado A (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci USA 100(Suppl 1):11861–11865

    PubMed  Google Scholar 

  36. Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sanchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8:635–649

    PubMed  Google Scholar 

  37. Zayas RM, Hernández A, Habermann B, Wang Y, Stary JM, Newmark PA (2005) The planarian Schmidtea mediterranea as a model for epigenetic germ cell specification: analysis of ESTs from the hermaphroditic strain. Proc Natl Acad Sci USA 102:18491–18496

    PubMed  Google Scholar 

  38. Sanchez Alvarado A, Newmark PA, Robb SM, Juste R (2002) The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129:5659–5665

    PubMed  Google Scholar 

  39. Gonzalez-Estevez C, Momose T, Gehring WJ, Salo E (2003) Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Natl Acad Sci USA 100:14046–14051

    PubMed  Google Scholar 

  40. Gonzalez-Estevez C, Arseni V, Thambyrajah RS, Felix DA, Aboobaker AA (2009) Diverse miRNA spatial expression patterns suggest important roles in homeostasis and regeneration in planarians. Int J Dev Biol 53:493–505

    PubMed  Google Scholar 

  41. Sánchez Alvarado A, Reddien PW, Newmark P, Nusbaum C (2003) Proposal for the sequencing of a new target genome: white paper for a planarian genome project. NHGRI

  42. Robb SM, Ross E, Alvarado AS (2008) SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res 36:D599–D606

    PubMed  Google Scholar 

  43. Morgan TH (1901) Regeneration. Macmillan, New York

    Google Scholar 

  44. Pedersen KJ (1976) Scanning electron microscopical observations on epidermal wound healing in the planarain Dugesia tigrina. Wilhelm Roux Arch Dev Biol 179:251–273

    Google Scholar 

  45. Chandebois R (1980) The dynamics of wound closure and its role in the programming of planarian regeneration. II. Distalization. Dev Growth Differ 22:693–704

    Google Scholar 

  46. Saló E, Baguñà J (1984) Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 83:63–80

    PubMed  Google Scholar 

  47. Saló E, Baguñà J (1989) Regeneration and pattern formation in planarians. II. Local origin and role of cell movements in blastema formation. Development 107:69–76

    Google Scholar 

  48. Gremigni V, Miceli C (1980) Cytophotometric evidence of cell “transdifferentiation” in planarian regeneration. Wilhelm Roux’s Arch 188:107–113

    Google Scholar 

  49. Gremigni V, Nigro M, Puccinelli I (1982) Evidence of male germ cell redifferentiation into female germ cells in planarian regeneration. J Embryol Exp Morphol 70:29–36

    PubMed  Google Scholar 

  50. Baguñà J, Saló E, Romero R, Garcia-Fernàndez J, Bueno D (1994) Regeneration and pattern formation in planarians: cells, molecules and genes. Zool Sci 11:781–795

    Google Scholar 

  51. Forsthoefel DJ, Newmark PA (2009) Emerging patterns in planarian regeneration. Curr Opin Genet Dev 19:412–420

    PubMed  Google Scholar 

  52. Gurley KA, Rink JC, Sanchez Alvarado A (2008) Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319:323–327

    PubMed  Google Scholar 

  53. Petersen CP, Reddien PW (2008) Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319:327–330

    PubMed  Google Scholar 

  54. Iglesias M, Gomez-Skarmeta JL, Salo E, Adell T (2008) Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. Development 135:1215–1221

    PubMed  Google Scholar 

  55. Adell T, Salo E, Boutros M, Bartscherer K (2009) Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration. Development 136:905–910

    PubMed  Google Scholar 

  56. Orii H, Watanabe K (2007) Bone morphogenetic protein is required for dorso-ventral patterning in the planarian Dugesia japonica. Dev Growth Differ 49:345–349

    PubMed  Google Scholar 

  57. Reddien PW, Bermange AL, Kicza AM, Sanchez Alvarado A (2007) BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134:4043–4051

    PubMed  Google Scholar 

  58. Molina MD, Salo E, Cebria F (2007) The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol 311:79–94

    PubMed  Google Scholar 

  59. Muñoz-Mármol AM, Casali A, Miralles A et al (1998) Characterization of platyhelminth POU domain genes: ubiquitous and specific anterior nerve cell expression of different epitopes of GtPOU-1. Mech Dev 76:127–140

    PubMed  Google Scholar 

  60. Calow P (1981) Growth in lower invertebrates. Comp Anim Nutr 4:53–76

    Google Scholar 

  61. Baguñà J, Romero R (1981) Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84:181–194

    Google Scholar 

  62. Oviedo NJ, Newmark PA, Sanchez Alvarado A (2003) Allometric scaling and proportion regulation in the freshwater planarian Schmidtea mediterranea. Dev Dyn 226:326–333

    PubMed  Google Scholar 

  63. Best JB, Goodman AB, Pigon A (1969) Fissioning in planarians: control by the brain. Science 164:565–566

    PubMed  Google Scholar 

  64. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    PubMed  Google Scholar 

  65. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    PubMed  Google Scholar 

  66. Yoshimori T, Noda T (2008) Toward unraveling membrane biogenesis in mammalian autophagy. Curr Opin Cell Biol 20:401–407

    PubMed  Google Scholar 

  67. Kourtis N, Tavernarakis N (2009) Autophagy and cell death in model organisms. Cell Death Differ 16:21–30

    PubMed  Google Scholar 

  68. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    PubMed  Google Scholar 

  69. Fimia GM, Stoykova A, Romagnoli A et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125

    PubMed  Google Scholar 

  70. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    PubMed  Google Scholar 

  71. Tsukamoto S, Kuma A, Mizushima N (2008) The role of autophagy during the oocyte-to-embryo transition. Autophagy 4:1076–1078

    PubMed  Google Scholar 

  72. Qu X, Zou Z, Sun Q et al (2007) Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    PubMed  Google Scholar 

  73. Penaloza C, Lin L, Lockshin RA, Zakeri Z (2006) Cell death in development: shaping the embryo. Histochem Cell Biol 126:149–158

    PubMed  Google Scholar 

  74. Tettamanti G, Salo E, Gonzalez-Estevez C, Felix DA, Grimaldi A, de Eguileor M (2008) Autophagy in invertebrates: insights into development, regeneration and body remodeling. Curr Pharm Des 14:116–125

    PubMed  Google Scholar 

  75. Vellai T (2009) Autophagy genes and ageing. Cell Death Differ 16:94–102

    PubMed  Google Scholar 

  76. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777

    PubMed  Google Scholar 

  77. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    PubMed  Google Scholar 

  78. Calow P (1978) Life cycles: and evolutionary approach to the physilogy of reproduction, development and ageing. Chapman and Hall, London

  79. Bowen I, Ryder T (1974) Cell autolysis and deletion in the planarian Polycelis tenuis Iijima. Cell Tissue Res 154:265–271

    PubMed  Google Scholar 

  80. Bowen ID, Ryder T, Dark C (1976) The effects of starvation on the planarian worm Polycelis tenuis Iijima. Cell Tissue Res 169:193–209

    PubMed  Google Scholar 

  81. Bowen ID, den Hollander JE, Lewis GH (1982) Cell death and acid phosphatase activity in the regenerating planarian Polycelis tenuis Iijima. Differentiation 21:160–167

    PubMed  Google Scholar 

  82. Gonzalez-Estevez C, Felix DA, Aboobaker AA, Salo E (2007) Gtdap-1 promotes autophagy and is required for planarian remodeling during regeneration and starvation. Proc Natl Acad Sci USA 104:13373–13378

    PubMed  Google Scholar 

  83. Gonzalez-Estevez C, Felix DA, Aboobaker AA, Salo E (2007) Gtdap-1 and the role of autophagy during planarian regeneration and starvation. Autophagy 3:640–642

    PubMed  Google Scholar 

  84. Gonzalez-Estevez C (2008) Autophagy in freshwater planarians. Methods Enzymol 451:439–465

    PubMed  Google Scholar 

  85. Gonzalez-Estevez C (2009) Autophagy meets planarians. Autophagy 5:290–297

    PubMed  Google Scholar 

  86. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9:15–30

    PubMed  Google Scholar 

  87. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    PubMed  Google Scholar 

  88. Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    PubMed  Google Scholar 

  89. Degenhardt K, Mathew R, Beaudoin B et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    PubMed  Google Scholar 

  90. Krieser RJ, White K (2002) Engulfment mechanism of apoptotic cells. Curr Opin Cell Biol 14:734–738

    PubMed  Google Scholar 

  91. McPhee CK, Baehrecke EH (2009) Autophagy in Drosophila melanogaster. Biochim Biophys Acta 1793:1452–1460

    PubMed  Google Scholar 

  92. Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W (2008) Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis 32:16–25

    PubMed  Google Scholar 

  93. Iwata A, Christianson JC, Bucci M et al (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci USA 102:13135–13140

    PubMed  Google Scholar 

  94. Sarkar S, Perlstein EO, Imarisio S et al (2007) Small molecules enhance autophagy and reduce toxicity in huntington’s disease models. Nat Chem Biol 3:331–338

    PubMed  Google Scholar 

  95. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    PubMed  Google Scholar 

  96. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    PubMed  Google Scholar 

  97. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31

    PubMed  Google Scholar 

  98. Takacs-Vellai K, Vellai T, Puoti A et al (2005) Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol 15:1513–1517

    PubMed  Google Scholar 

  99. Williams A, Jahreiss L, Sarkar S et al (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 76:89–101

    PubMed  Google Scholar 

  100. Chera S, de Rosa R, Miljkovic-Licina M et al (2006) Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J Cell Sci 119:846–857

    PubMed  Google Scholar 

  101. Adell T, Marsal M, Salo E (2008) Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 218:89–103

    PubMed  Google Scholar 

  102. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009) Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156:885–898

    PubMed  Google Scholar 

  103. Inoki K, Ouyang H, Zhu T et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955–968

    PubMed  Google Scholar 

  104. Yen TH, Wright NA (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2:203–212

    PubMed  Google Scholar 

  105. Lippens S, Hoste E, Vandenabeele P, Agostinis P, Declercq W (2009) Cell death in the skin. Apoptosis 14:549–569

    PubMed  Google Scholar 

  106. Mori C, Nakamura N, Kimura S, Irie H, Takigawa T, Shiota K (1995) Programmed cell death in the interdigital tissue of the fetal mouse limb is apoptosis with DNA fragmentation. Anat Rec 242:103–110

    PubMed  Google Scholar 

  107. Zuzarte-Luis V, Hurle JM (2005) Programmed cell death in the embryonic vertebrate limb. Semin Cell Dev Biol 16:261–269

    PubMed  Google Scholar 

  108. Coucouvanis E, Martin GR (1995) Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83:279–287

    PubMed  Google Scholar 

  109. Malikova MA, Van Stry M, Symes K (2007) Apoptosis regulates notochord development in Xenopus. Dev Biol 311:434–448

    PubMed  Google Scholar 

  110. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    PubMed  Google Scholar 

  111. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510

    PubMed  Google Scholar 

  112. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    PubMed  Google Scholar 

  113. Shimizu S, Kanaseki T, Mizushima N et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    PubMed  Google Scholar 

  114. Gonzalez-Polo RA, Boya P, Pauleau AL et al (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118:3091–3102

    PubMed  Google Scholar 

  115. Boya P, Gonzalez-Polo RA, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    PubMed  Google Scholar 

  116. Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11

    PubMed  Google Scholar 

  117. Martin DN, Baehrecke EH (2004) Caspases function in autophagic programmed cell death in Drosophila. Development 131:275–284

    PubMed  Google Scholar 

  118. Bueno D, Fernandez-Rodriguez J, Cardona A, Hernandez-Hernandez V, Romero R (2002) A novel invertebrate trophic factor related to invertebrate neurotrophins is involved in planarian body regional survival and asexual reproduction. Dev Biol 252:188–201

    PubMed  Google Scholar 

  119. Hwang JS, Kobayashi C, Agata K, Ikeo K, Gojobori T (2004) Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay. Gene 333:15–25

    PubMed  Google Scholar 

  120. Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, Alvarado AS (2009) Cell death and tissue remodeling in planarian regeneration. Dev Biol. doi:10.1016/j.ydbio.2009.09.015

  121. Inoue T, Hayashi T, Takechi K, Agata K (2007) Clathrin-mediated endocytic signals are required for the regeneration of, as well as homeostasis in, the planarian CNS. Development 134:1679–1689

    PubMed  Google Scholar 

  122. Lambertsson A (1998) The minute genes in Drosophila and their molecular functions. Adv Genet 38:69–134

    PubMed  Google Scholar 

  123. Morata G, Ripoll P (1975) Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol 42:211–221

    PubMed  Google Scholar 

  124. Simpson P (1979) Parameters of cell competition in the compartments of the wing disc of Drosophila. Dev Biol 69:182–193

    PubMed  Google Scholar 

  125. Simpson P, Morata G (1981) Differential mitotic rates and patterns of growth in compartments in the Drosophila wing. Dev Biol 85:299–308

    PubMed  Google Scholar 

  126. Bryant PJ, Simpson P (1984) Intrinsic and extrinsic control of growth in developing organs. Q Rev Biol 59:387–415

    PubMed  Google Scholar 

  127. Moreno E, Basler K, Morata G (2002) Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416:755–759

    PubMed  Google Scholar 

  128. Moreno E, Basler K (2004) dMyc transforms cells into super-competitors. Cell 117:117–129

    PubMed  Google Scholar 

  129. Li W, Baker NE (2007) Engulfment is required for cell competition. Cell 129:1215–1225

    PubMed  Google Scholar 

  130. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (2004) Drosophila myc regulates organ size by inducing cell competition. Cell 117:107–116

    Google Scholar 

  131. Martin FA, Herrera SC, Morata G (2009) Cell competition, growth and size control in the Drosophila wing imaginal disc. Development 136:3747–3756

    PubMed  Google Scholar 

  132. Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131:5591–5598

    PubMed  Google Scholar 

  133. Moreno E (2008) Is cell competition relevant to cancer? Nat Rev Cancer 8:141–147

    PubMed  Google Scholar 

  134. Oliver ER, Saunders TL, Tarle SA, Glaser T (2004) Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse minute. Development 131:3907–3920

    PubMed  Google Scholar 

  135. Oertel M, Menthena A, Dabeva MD, Shafritz DA (2006) Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology 130:507–520 (Quiz 590)

    PubMed  Google Scholar 

  136. Jin Z, Kirilly D, Weng C et al (2008) Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell 2:39–49

    PubMed  Google Scholar 

  137. Nystul T, Spradling A (2007) An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell 1:277–285

    PubMed  Google Scholar 

  138. Pellettieri J, Sanchez Alvarado A (2007) Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 41:83–105

    PubMed  Google Scholar 

  139. Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14:1262–1266

    PubMed  Google Scholar 

  140. Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7:491–501

    PubMed  Google Scholar 

  141. James AA, Bryant PJ (1981) A quantitative study of cell death and mitotic inhibition in gamma-irradiated imaginal wing discs of Drosophila melanogaster. Radiat Res 87:552–564

    PubMed  Google Scholar 

  142. Milan M, Campuzano S, Garcia-Bellido A (1997) Developmental parameters of cell death in the wing disc of Drosophila. Proc Natl Acad Sci USA 94:5691–5696

    PubMed  Google Scholar 

  143. Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14:399–410

    PubMed  Google Scholar 

  144. Perez-Garijo A, Shlevkov E, Morata G (2009) The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136:1169–1177

    PubMed  Google Scholar 

  145. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5:836–847

    PubMed  Google Scholar 

  146. Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213:286–300

    PubMed  Google Scholar 

  147. Kan NG, Junghans D, Izpisua Belmonte JC (2009) Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB J 23:3516–3525

    PubMed  Google Scholar 

  148. Chera S, Ghila L, Dobretz K et al (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17:279–289

    PubMed  Google Scholar 

  149. Park HD, Ortmeyer AB, Blankenbaker DP (1970) Cell division during regeneration in Hydra. Nature 227:617–619

    PubMed  Google Scholar 

  150. Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16:1606–1615

    PubMed  Google Scholar 

  151. Hori I (1991) Role of fixed parenchyma cells in blastema formation of the planarian Dugesia japonica. Int J Dev Biol 35:101–108

    PubMed  Google Scholar 

  152. Salvetti A, Rossi L, Bonuccelli L et al (2009) Adult stem cell plasticity: neoblast repopulation in non-lethally irradiated planarians. Dev Biol 328:305–314

    PubMed  Google Scholar 

  153. Wolff E, Dubois F (1948) Sur la migration des cellules de régénération chez les planaires. Rev Swisse Zool 55:218–227

    Google Scholar 

  154. Rossi L, Salvetti A, Lena A et al (2006) DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev Genes Evol 216:335–346

    PubMed  Google Scholar 

  155. Baguñà J, Saló E, Romero R (1989) Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. Int J Dev Biol 33:261–264

    PubMed  Google Scholar 

  156. Bautz A, Schilt J (1986) Somatostatin-like peptide and regeneration capacities in planarians. Gen Comp Endocrinol 64:267–272

    PubMed  Google Scholar 

  157. Saló E, Baguñà J (1985) Proximal and distal transformation during intercalary regeneration in the planarian Dugesia (S) mediterranea. Roux’s Arch Dev Biol 194:364–368

    Google Scholar 

Download references

Acknowledgments

We apologize to the authors of research articles we could not cite due to space limitations. The authors would like to thank to D. Felix, Professor J. Baguñà and the anonymous reviewers for their valuable opinion and proofreading of the manuscript. We are also indebted to Dr M. Sefton for advice on the English style and for critical reading of the manuscript. This work was supported by grants BFU2005-00422 and BFU2008-01544 from the Ministerio de Educación y Ciencia (Spain) and grants 2005SGR00769 and 2009SGR1018 from AGAUR (Generalitat de Catalunya, Spain) to ES. CGE is funded by a Beatriu de Pinós fellowship (Generalitat de Catalunya, Spain) and an Anne McLaren fellowship (University of Nottingham, UK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristina González-Estévez or Emili Saló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Estévez, C., Saló, E. Autophagy and apoptosis in planarians. Apoptosis 15, 279–292 (2010). https://doi.org/10.1007/s10495-009-0445-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0445-4

Keywords

Navigation