Skip to main content
Log in

A Conditional Moment Closure Study of Chemical Reaction Source Terms in SCCI Combustion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate conditional moment closure (CMC) approaches to model chemical reaction rates in compositionally stratified, autoigniting mixtures, in thermochemical conditions relevant to stratified charge compression ignition (SCCI) engines. First-order closure, second-order closure and double conditioning are evaluated and contrasted as options in comparison to a series of direct numerical simulations (DNSs). The two-dimensional (2D) DNS cases simulate ignitions in SCCI-like thermochemical conditions with compositionally stratified n-heptane/air mixtures in a constant volume. The cases feature two different levels of stratification with three mean temperatures in the negative-temperature coefficient (NTC) regime of ignition delay times. The first-order closure approach for reaction rates is first assessed using hybrid DNS-CMC a posteriori tests when implemented in an open source computational fluid dynamics (CFD) package known as OpenFOAM\(^{{\circledR }}\). The hybrid DNS-CMC a posteriori tests are not a full CMC but a DNS-CMC hybrid in that they compute the scalar and velocity fields at the DNS resolution, thus isolating the first-order reaction rate closure model as the main source of modelling error (as opposed to turbulence model, scalar probability density function model, and scalar dissipation rate model). The hybrid DNS-CMC a posteriori test reveals an excellent agreement between the model and DNS for the cases with low levels of stratification, whereas deviations from the DNS are observed in cases which exhibit high level of stratifications. The a priori analysis reveals that the reason for disagreement is failure of the first-order closure hypothesis in the model due to the high level of conditional fluctuations. Second-order and double conditioning approaches are then evaluated in a priori tests to determine the most promising path forwards in addressing higher levels of stratification. The a priori tests use the DNS data to compute the model terms, thus directly evaluating the model assumptions. It is shown that in the cases with a high level of stratification, even the second-order estimation of the reaction rate source term cannot provide a reasonably accurate closure. Double conditioning using mixture-fraction and sensible enthalpy, however, provides an accurate first-order closure to the reaction rate source term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For clarity the hybrid DNS-CMC a posteriori and a priori concepts are defined here:

    • a posteriori: is referred to when the CFD-CMC model is integrated in time according to the model equations starting from the DNS initial condition. The results are then compared to DNS data.

    • a priori: is referred to when the DNS data are post-processed on their own without actually running the CMC model.

  2. Note that instead of feeding back the mean mass fractions, the density and other required properties such as the specific heats, viscosity, etc could be determined in the CMC domain and fed back. This would make the calculation cheaper but as a matter of convenience it is not implemented this way.

  3. The CMC solver may be invoked before the CFD solver, alternatively. For small enough time steps both approaches converge to the same solution.

  4. The number of bins was determined by a series of sensitivity tests not shown here.

  5. In effect, the ghost nodes hold the value of boundary nodes from reaction step. While in pinciple, the value of ghost nodes can be transported to the internal nodes via diffusion and convection, in the present cases here they will not affect the solution in the internal nodes. On the boundary nodes at ξ = 0 and ξ = 1 the value of N is fixed at zero by definition, therefore, no diffusion will take place from ghost nodes to internal nodes. As for convection, the \(\tilde {v}_{\xi }\) in Eq. 5 is an outgoing velocity at both boundaries. At the left boundary, \(\tilde {v}_{\xi }\) is negative (an outgoing wave from right to left), because at ξ = 0 the velocity becomes \(\tilde {v}_{\xi } = - \left (\partial Z_{\min } / \partial t \right ) / {\Delta } {\Theta }\) with \(\partial Z_{\min } / \partial t \ge 0\) in the present cases. At the right boundary, \(\tilde {v}_{\xi }\) is positive (an outgoing wave from left to right), because at ξ = 1 the velocity becomes \(\tilde {v}_{\xi } = - \left (\partial Z_{\max } / \partial t \right ) / {\Delta } {\Theta }\) with \(\partial Z_{\max } / \partial t \le 0\) in the present cases. For evolution of \(Z_{\min }\) and \(Z_{\max }\) in the present cases, see Fig. 5.

  6. As per Ref. [28, 29], if negative mixture-fractions are encountered upon initialisation, they are truncated to zero. In the HS cases, this operation shifts the mean mixture-fraction from Z 0 = 0.0195 to Z 0 = 0.0210.

  7. For example the relative error in τ 10% is found by the difference in τ 10% obtained from OF-CMC and DNS divided by τ 10% from DNS. The colours in Fig. 4 distinguish the positive values from negatives.

  8. The oscillations in the second-order results arise from statistical noise due to the finite sample. A larger sample would reduce this noise but it is unlikely to change the key findings.

  9. If \(\dot {\omega }\) is only a function of T, then Eq. 9 is still mathematically valid and the 〈⋅|〉 operator reduces to a normal averaging.

  10. In practice 5 bins are not enough and more is needed to capture the diffusive transport in the progress variable space which has to be accurately modelled.

References

  1. Dec, J.E.: Proc. Combust. Inst. 32(2), 2727 (2009). http://www.sciencedirect.com/science/article/pii/S1540748908001739

    Article  Google Scholar 

  2. Yao, M., Zheng, Z., Liu, H.: Prog. Energy Combust. Sci. 35(5), 398 (2009). http://www.sciencedirect.com/science/article/pii/S0360128509000197

    Article  Google Scholar 

  3. Lu, X., Han, D., Huang, Z.: Prog. Energy Combust. Sci. 37(6), 741 (2011). http://www.sciencedirect.com/science/article/pii/S0360128511000219

    Article  Google Scholar 

  4. Saxena, S., Bedoya, I.D.: Prog. Energy Combust. Sci. 39(5), 457 (2013). http://www.sciencedirect.com/science/article/pii/S0360128513000257

    Article  Google Scholar 

  5. Yang, Y., Dec, J., Dronniou, N., Sjöberg, M., Cannella, W.: SAE Paper 2011-01-1359. http://papers.sae.org/2011-01-1359/ (2011)

  6. Yang, Y., Dec, J.E., Dronniou, N., Sjöberg, M.: Proc. Combust. Inst. 33 (2), 3047 (2011). http://www.sciencedirect.com/science/article/pii/S1540748910001999

    Article  Google Scholar 

  7. Sjöberg, M., Dec, J.E.: SAE Paper 2006-04-03. http://papers.sae.org/2006-01-0629/ (2006)

  8. Yang, Y., Dec, J., Dronniou, N., Cannella, W.: SAE Paper 2012-01-1120. http://papers.sae.org/2012-01-1120/ (2012)

  9. Dec, J. E., Yang, Y., Dronniou, N.: SAE Paper 2011-01-0897. http://papers.sae.org/2011-01-0897/ (2011)

  10. Dec, J.E., Sjöberg, M.: SAE Paper 2004-01-0557. http://papers.sae.org/2004-01-0557/ (2004)

  11. Hwang, W., Dec, J.E., Sjöberg, M.: SAE Paper 2007-01-4130. http://papers.sae.org/2007-01-4130/ (2007)

  12. Ma, J., Lü, X., Ji, L., Huang, Z.: Energy Fuels 22(2), 954 (2008). http://pubs.acs.org/doi/abs/10.1021/ef700685v?journalCode=enfuem

    Article  Google Scholar 

  13. Dahl, D., Andersson, M., Berntsson, A., Denbratt, I., Koopmans, L.: SAE Paper 2009-01-1785. http://papers.sae.org/2009-01-1785/ (2009)

  14. Wada, Y., Senda, J.: SAE Paper 2009-01-0498. http://papers.sae.org/2009-01-0498/ (2009)

  15. Herold, R., Krasselt, J., Foster, D.E., Ghandhi, J., Reuss, D., Najt, P.: SAE Paper 2009-01-1106 2(1), 1034 (2009). http://papers.sae.org/2009-01-1106/

    Google Scholar 

  16. Krasselt, J., Foster, D.E., Ghandhi, J., Herold, R., Reuss, D., Najt, P.: SAE Paper 2009-01-1105. http://papers.sae.org/2009-01-1105/ (2009)

  17. Kalghatgi, G., Hildingsson, L., Harrison, A., Johansson, B.: Proc. Combust. Inst. 33(2), 3015 (2011). http://www.sciencedirect.com/science/article/pii/S1540748910002361

    Article  Google Scholar 

  18. Viggiano, A., Magi, V.: SAE Paper 2011-01-0837, pp. 01–0837. http://papers.sae.org/2011-01-0837/ (2011)

  19. Jung, D., Kwon, O., Lim, O. T., Mech, J.: Sci. Technol. 25(6), 1383 (2011). http://link.springer.com/article/10.1007/s12206-011-0404-1

    Google Scholar 

  20. Chen, J.H., Hawkes, E.R., Sankaran, R., Mason, S.D., Im, H.G.: Combust. Flame 145(1), 128 (2006). http://www.sciencedirect.com/science/article/pii/S0010218005003342

    Article  Google Scholar 

  21. Hawkes, E.R., Sankaran, R., Pébay, P.P., Chen, J.H.: Combust. Flame 145(1), 145 (2006). http://www.sciencedirect.com/science/article/pii/S0010218005003354

    Article  Google Scholar 

  22. Yoo, C.S., Lu, T., Chen, J.H., Law, C.K.: Combust. Flame 158(9), 1727 (2011). http://www.sciencedirect.com/science/article/pii/S001021801100040X

    Article  Google Scholar 

  23. Bhagatwala, A., Chen, J.H., Lu, T.: Combust. Flame 161(7), 1826 (2014). http://www.sciencedirect.com/science/article/pii/S0010218014000030

    Article  Google Scholar 

  24. Fukushima, N., Katayama, M., Naka, Y., Oobayashi, T., Shimura, M., Nada, Y., Tanahashi, M., Miyauchi, T.: Proc. Combust. Inst. 35(3), 3009 (2015). http://www.sciencedirect.com/science/article/pii/S1540748914003691

    Article  Google Scholar 

  25. Yoo, C.S., Luo, Z., Lu, T., Kim, H., Chen, J.H.: Proc. Combust. Inst. 34 (2), 2985 (2013). http://www.sciencedirect.com/science/article/pii/S154074891200020X

    Article  Google Scholar 

  26. Luong, M.B., Luo, Z., Lu, T., Chung, S.H., Yoo, C.S.: Combust. Flame 160(10), 2038 (2013). http://www.sciencedirect.com/science/article/pii/S0010218013001569

    Article  Google Scholar 

  27. Kim, S.O., Luong, M.B., Chen, J.H., Yoo, C.S.: Combust Flame. http://www.sciencedirect.com/science/article/pii/S0010218014002685 (2014)

  28. Bansal, G., Im, H.G.: Combust. Flame 158(11), 2105 (2011). http://www.sciencedirect.com/science/article/pii/S0010218011001064

    Article  Google Scholar 

  29. Talei, M., Hawkes, E.R.: Proc. Combust. Inst. 35(3), 3027 (2015). http://www.sciencedirect.com/science/article/pii/S1540748914004234

    Article  Google Scholar 

  30. Luong, M.B., Yu, G.H., Lu, T., Chung, S.H., Yoo, C.S.: Combust. Flame 162(12), 4566 (2015). http://www.sciencedirect.com/science/article/pii/S0010218015003181

    Article  Google Scholar 

  31. Sun, W., Won, S.H., Gou, X., Ju, Y.: Proc. Combust. Inst. 35(1), 1049 (2015). http://www.sciencedirect.com/science/article/pii/S1540748914001448

    Article  Google Scholar 

  32. El-Asrag, H.A., Ju, Y.: Combust. Theor. Model 17(2), 316 (2013). http://www.tandfonline.com/doi/abs/10.1080/13647830.2013.764020

    Article  Google Scholar 

  33. El-Asrag, H.A., Ju, Y.: Combust. Flame 161(1), 256 (2014). http://www.sciencedirect.com/science/article/pii/S0010218013002708

    Article  Google Scholar 

  34. Luong, M.B., Lu, T., Chung, S.H., Yoo, C.S.: Combust. Flame 161(11), 2878 (2014). http://www.sciencedirect.com/science/article/pii/S0010218014001345

    Article  Google Scholar 

  35. Bansal, G., Mascarenhas, A., Chen, J.H.: Combust. Flame 162(3), 688 (2015). http://www.sciencedirect.com/science/article/pii/S0010218014002697

    Article  Google Scholar 

  36. Yu, R., Bai, X.S.: Combust. Flame 160(9), 1706 (2013). http://www.sciencedirect.com/science/article/pii/S0010218013001259

    Article  Google Scholar 

  37. Krisman, A., Hawkes, E.R., Kook, S., Sjöberg, M., Dec, J.E.: Fuel 99, 45 (2012). http://www.sciencedirect.com/science/article/pii/S0016236112002657

    Article  Google Scholar 

  38. Mittal, V., Cook, D.J., Pitsch, H.: Combust. Flame 159(8), 2767 (2012). http://www.sciencedirect.com/science/article/pii/S0010218012000284

    Article  Google Scholar 

  39. Cook, D.J., Pitsch, H., Chen, J.H., Hawkes, E.R.: Proc. Combust. Inst. 31 (2), 2903 (2007). http://www.sciencedirect.com/science/article/pii/S1540748906002422

    Article  Google Scholar 

  40. Pal, P., Keum, S., Im, H.G.: Int. J. Engine Res , 280–290 (2015). http://jer.sagepub.com/content/17/3/280

  41. Zhang, Y., Kung, E., Haworth, D.: Proc. Combust. Inst. 30(2), 2763 (2005). http://www.sciencedirect.com/science/article/pii/S0082078404002759

    Article  Google Scholar 

  42. Bisetti, F., Chen, J.Y., Hawkes, E.R., Chen, J.H.: Combust. Flame 155 (4), 571 (2008). http://www.sciencedirect.com/science/article/pii/S0010218008001818

    Article  Google Scholar 

  43. Klimenko, A.Y.: Fluid Dyn. 25(3), 327 (1990). http://link.springer.com/article/10.1007/BF01049811

    Article  Google Scholar 

  44. Bilger, R.: Phys. Fluids 5(2), 436 (1993). http://scitation.aip.org/content/aip/journal/pofa/5/2/10.1063/1.858867

    Article  Google Scholar 

  45. Klimenko, A.Y., Bilger, R.W.: Prog. Energy Combust. Sci 25(6), 595 (1999). http://www.sciencedirect.com/science/article/pii/S0360128599000064

    Article  Google Scholar 

  46. Navarro-Martinez, S., Kronenburg, A.: Proc. Combust. Inst. 31(2), 1721 (2007). http://www.sciencedirect.com/science/article/pii/S1540748906002136

    Article  Google Scholar 

  47. Richardson, E., Mastorakos, E.: Proc. Medit. Comb. Symp. 5, (2007). http://eprints.soton.ac.uk/203183/

  48. Kim, G., Kang, S., Kim, Y., Bilger, R., Cleary, M.: Combust. Theor. Model 11(4), 527 (2007). http://www.tandfonline.com/doi/abs/10.1080/13647830600985297

    Article  Google Scholar 

  49. Sreedhara, S., Huh, K.Y.: Combust. Flame 143(1), 119 (2005). http://www.sciencedirect.com/science/article/pii/S0010218005001446

    Article  Google Scholar 

  50. Kim, S.H., Huh, K.Y., Fraser, R.A.: Proc. Combust. Inst. 28(1), 185 (2000). http://www.sciencedirect.com/science/article/pii/S0082078400802106

    Article  Google Scholar 

  51. Navarro-Martinez, S., Kronenburg, A.: Proc. Combust. Inst. 32(1), 1509 (2009). http://www.sciencedirect.com/science/article/pii/S1540748908001703

    Article  Google Scholar 

  52. Devaud, C., Bray, K.: Combust. Flame 132 (1), 102 (2003). http://www.sciencedirect.com/science/article/pii/S0010218002004273

    Article  Google Scholar 

  53. Sayed, A.E., Devaud, C.: Combust. Theor. Model 12(5), 943 (2008). http://www.tandfonline.com/doi/abs/10.1080/13647830802116469

    Article  Google Scholar 

  54. Buckrell, A., Devaud, C.: Flow Turb. Comb. 90(3), 621 (2013). http://link.springer.com/article/10.1007/s10494-013-9445-0

    Article  Google Scholar 

  55. Garmory, A., Mastorakos, E.: Proc. Combust. Inst. 33(1), 1673 (2011). http://www.sciencedirect.com/science/article/pii/S1540748910001094

    Article  Google Scholar 

  56. Triantafyllidis, A., Mastorakos, E.: Flow Turb. Comb. 84(3), 481 (2010). http://link.springer.com/article/10.1007/s10494-009-9226-y

    Article  Google Scholar 

  57. De Paola, G., Kim, I., Mastorakos, E.: Flow Turb. Comb. 82(4), 455 (2009). http://link.springer.com/article/10.1007/s10494-008-9183-x

    Article  Google Scholar 

  58. Richardson, E., Yoo, C.S., Chen, J.: Proc. Combust. Inst. 32(2), 1695 (2009). http://www.sciencedirect.com/science/article/pii/S1540748908002216

    Article  Google Scholar 

  59. Kim, S.H., Huh, K.Y.: Combust. Flame 138(4), 336 (2004) http://www.sciencedirect.com/science/article/pii/S0010218004001336

    Article  Google Scholar 

  60. Cleary, M., Kent, J., Bilger, R.: Proc. Combust. Inst. 29(1), 273 (2002). http://www.sciencedirect.com/science/article/pii/S1540748902800372

    Article  Google Scholar 

  61. Cleary, M., Kent, J.: Combust. Flame 143(4), 357 (2005). http://www.sciencedirect.com/science/article/pii/S0010218005002233

    Article  Google Scholar 

  62. Mantel, T., Bilger, R.: Combust. Sci. Technol. 110(1), 393 (1995). http://www.tandfonline.com/doi/abs/10.1080/00102209508951933

    Article  Google Scholar 

  63. Swaminathan, N., Bilger, R.: Combust. Theor. Model 5(2), 241 (2001). http://www.tandfonline.com/doi/abs/10.1088/1364-7830/5/2/307

    Article  Google Scholar 

  64. Amzin, S., Swaminathan, N., Rogerson, J., Kent, J.: Combust. Sci. Technol. 184(10-11), 1743 (2012). http://www.tandfonline.com/doi/abs/10.1080/00102202.2012.690629

    Article  Google Scholar 

  65. Amzin, S., Swaminathan, N.: Combust. Theor. Model 17(6), 1125 (2013). http://www.tandfonline.com/doi/abs/10.1080/13647830.2013.848382

    Article  Google Scholar 

  66. Thornber, B., Bilger, R., Masri, A., Hawkes, E.: J. Comput. Phys. 230(20), 7687 (2011). http://www.sciencedirect.com/science/article/pii/S0021999111003974

    Article  MathSciNet  Google Scholar 

  67. Salehi, F., Talei, M., Hawkes, E.R., Yoo, C.S., Lucchini, T., D’Errico, G., Kook, S.: Proc. Combust. Inst. 35(3), 3087 (2015). http://www.sciencedirect.com/science/article/pii/S1540748914000388

    Article  Google Scholar 

  68. Salehi, F., Talei, M., Hawkes, E.R., Yoo, C.S., Lucchini, T., D’Errico, G., Kook, S.: Flow Turb. Comb. , 1–28 (2015). http://link.springer.com/article/10.1007/s10494-015-9604-6

  69. Wright, Y., De Paola, G., Boulouchos, K., Mastorakos, E.: Combust. Flame 143(4), 402 (2005). http://www.sciencedirect.com/science/article/pii/S0010218005002269

    Article  Google Scholar 

  70. Bolla, M., Wright, Y.M., Boulouchos, K., Borghesi, G., Mastorakos, E.: Combust. Sci. Technol. 185(5), 766 (2013). http://www.tandfonline.com/doi/abs/10.1080/00102202.2012.752362

    Article  Google Scholar 

  71. Han, I., Huh, K.Y.: Int. J. Automotive Tech 6, 571 (2005). http://www.erc.wisc.edu/documents/6-KIVAUsers_CMC_engine.pdf

    Google Scholar 

  72. De Paola, G., Mastorakos, E., Wright, Y., Boulouchos, K.: Combust. Sci. Technol. 180(5), 883 (2008) http://www.tandfonline.com/doi/abs/10.1080/00102200801894273#.V0AnTJF96Uk

    Article  Google Scholar 

  73. Wright, Y., Boulouchos, K., De Paola, G.: E. Mastorakos, SAE Paper 2009-01-0717 2(1), 714 (2009) http://papers.sae.org/2009-01-0717/

    Google Scholar 

  74. Seo, J., Lee, D., Huh, K.Y., Chung, J.: Combust. Sci. Technol. 182 (9), 1241 (2010). http://www.tandfonline.com/doi/abs/10.1080/00102201003639300

    Article  Google Scholar 

  75. Borghesi, G., Mastorakos, E., Devaud, C.B., Bilger, R.W.: Combust. Theor. Model 15(5), 725 (2011). http://www.tandfonline.com/doi/abs/10.1080/13647830.2011.560282#.V0AmiJF96Uk

    Article  Google Scholar 

  76. Bolla, M., Farrace, D., Wright, Y.M., Boulouchos, K.: Fuel 117, 309 (2014). http://www.sciencedirect.com/science/article/pii/S0016236113008843

    Article  Google Scholar 

  77. Mastorakos, E., Bilger, R.: Phys. Fluids 10(6), 1246 (1998). http://scitation.aip.org/content/aip/journal/pof2/10/6/10.1063/1.869652

    Article  Google Scholar 

  78. Kronenburg, A.: Phys. Fluids 16(7), 2640 (2004). http://scitation.aip.org/content/aip/journal/pof2/16/7/10.1063/1.1758219

    Article  Google Scholar 

  79. Cha, C.M., Kosály, G., Pitsch, H.: Phys. Fluids 13(12), 3824 (2001). http://scitation.aip.org/content/aip/journal/pof2/13/12/10.1063/1.1415426

    Article  Google Scholar 

  80. Sreedhara, S., Lakshmisha, K.: Proc. Combust. Inst. 29(2), 2051 (2002). http://www.sciencedirect.com/science/article/pii/S1540748902802504

    Article  Google Scholar 

  81. Sreedhara, S., Lakshmisha, K.: Proc. Combust. Inst. 29(2), 2069 (2002). http://www.sciencedirect.com/science/article/pii/S1540748902802528

    Article  Google Scholar 

  82. Cao, S., Echekki, T.: Combust. Flame 151(1), 120 (2007). http://www.sciencedirect.com/science/article/pii/S0010218007001101

    Article  Google Scholar 

  83. Borghesi, G., Mastorakos, E., Cant, R.S.: Combust. Flame 160(7), 1254 (2013). http://www.sciencedirect.com/science/article/pii/S0010218013000515

    Article  Google Scholar 

  84. Issa, R.I.: J. Comput. Phys. 62(1), 40 (1986). http://www.sciencedirect.com/science/article/pii/0021999186900999

    Article  MathSciNet  Google Scholar 

  85. Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. thesis, Imperial College. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311802 (1996)

  86. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: Comp. Phys. 12(6), 620 (1998). http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744

    Article  Google Scholar 

  87. LeVeque, R.J.: Finite volume methods for hyperbolic problems, vol. 31. University Press, Cambridge (2002). https://books.google.com.au/books?id=mfAfAwAAQBAJ&dq=Finite+Volume+Methods+for+Hyperbolic+Problems&lr=

  88. Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E., Klasky, S., Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., et al.: Comp. Sci. Discov. 2(1), 015001 (2009). http://iopscience.iop.org/article/10.1088/1749-4699/2/1/015001/meta

    Article  Google Scholar 

  89. Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: App. Num. Math. 35(3), 177 (2000). http://www.sciencedirect.com/science/article/pii/S0168927499001415

    Article  Google Scholar 

  90. Kennedy, C.A., Gruber, A.: J. Comput. Phys. 227(3), 1676 (2008). http://www.sciencedirect.com/science/article/pii/S0021999107004251

    Article  MathSciNet  Google Scholar 

  91. Kee, R., Dixon-Lewis, G., Warnatz, J., Coltrin, M., Miller, J.: Technical Report SAND86-8246, Sandia National Laboratories (1986)

  92. Barlow, R., Frank, J., Karpetis, A., Chen, J.Y.: Combust. Flame 143 (4), 433 (2005). http://www.sciencedirect.com/science/article/pii/S0010218005002282

    Article  Google Scholar 

  93. Yoo, C.S., Lu, T., Chen, J.H., Law, C.K.: Combust. Flame 158(9), 1727 (2011). http://www.sciencedirect.com/science/article/pii/S001021801100040X

    Article  Google Scholar 

  94. Hinze, J.: Turbulence. McGraw-Hill, New York (1975)

    Google Scholar 

  95. Mastorakos, E., Baritaud, T., Poinsot, T.: Combust. Flame 109(1), 198 (1997). http://www.sciencedirect.com/science/article/pii/S0010218096001496

    Article  Google Scholar 

  96. Krisman, A., Hawkes, E.R., Talei, M., Bhagatwala, A., Chen, J.H.: A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions. Submitted to the Proceedings of the Combustion Institute, Manuscript Number PROCI-D-15-01109R1 (2015)

  97. Echekki, T., Chen, J.H.: Proc. Combust. Inst. 29(2), 2061 (2002). http://www.sciencedirect.com/science/article/pii/S1540748902802516

    Article  Google Scholar 

  98. Echekki, T., Chen, J.H.: Combust. Flame 134(3), 169 (2003). http://www.sciencedirect.com/science/article/pii/S0010218003000889

    Article  Google Scholar 

  99. Pope, S.B.: Proc. Combust. Inst. 34(1), 1 (2013) http://www.sciencedirect.com/science/article/pii/S1540748912003963

    Article  MathSciNet  Google Scholar 

  100. Cha, C.M., Pitsch, H.: Combust. Theor. Model 6(3), 425 (2002) http://www.tandfonline.com/doi/abs/10.1088/1364-7830/6/3/303

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council. The research benefited from computational resources provided through the National Computational Merit Allocation Scheme, supported by the Australian Government. The computational facilities supporting this project included the Australian NCI National Facility, the partner share of the NCI facility provided by Intersect Australia Pty Ltd., Pawsey Supercomputing Centre (with funding from the Australian Government and the Government of Western Australia), and the UNSW Faculty of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evatt R. Hawkes.

Ethics declarations

Funding

This research was supported under Australian Research Council under the Discovery Projects funding scheme (project numbers DP110104763 and DP150104393) and the Linkage Infrastructure, Equipment and Facilities scheme (project numbers LE140100002, LE160100002 and LE160100051). Evatt Hawkes is the recipient of an Australian Research Council Future Fellowship (project number FT100100536).

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzadi, J.J., Talei, M., Bolla, M. et al. A Conditional Moment Closure Study of Chemical Reaction Source Terms in SCCI Combustion. Flow Turbulence Combust 100, 93–118 (2018). https://doi.org/10.1007/s10494-017-9825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9825-y

Keywords

Navigation