Skip to main content
Log in

Effects of the Local Flow Topologies Upon the Structure of a Premixed Methane-air Turbulent Jet Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Local flow topologies have been identified and their interactions with the iso-scalar surfaces geometries have been investigated using the results of a three-dimensional direct numerical simulation (DNS) of a turbulent premixed methane-air flame in a piloted Bunsen burner configuration with tabulated chemistry. The universal teardrop shape of the joint probability density function (jpdf) of the second and third invariants of the velocity-gradient tensor disappears in the different flame regions under study. A ‘canonical’ vortex, which affects the fine-scale structure of the turbulent premixed flame, has been identified and analyzed at three times, differing by increments of the order of the Kolmogorov time micro-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Perry, A., Chong, M.: A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fluid Mech. 19, 125–155 (1987)

    Article  Google Scholar 

  2. Chong, M., Perry, A., Cantwell, B.: A general classification of three-dimensional flow fields. Phys. Fluids 2, 765–777 (1990)

    Article  MathSciNet  Google Scholar 

  3. Soria, J., Sondergaard, R., Cantweel, B., Chong, M., Perry, A.: A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6, 871–884 (1994)

    Article  MATH  Google Scholar 

  4. Blackburn, H., Mansour, N., Cantwell, B.: Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 301, 269–292 (1996)

    Article  MathSciNet  Google Scholar 

  5. Chong, M., Perry, A., Chacin, J., Cantweel, B.: Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357, 225–247 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chacin, J., Cantwell, B.: Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404, 87–115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ooi, A., Martin, J., Soria, J., Chong, M.: A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141–174 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Da silva, C., Pereira, J.: Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 120, 055101/ 1–8 (2008)

    Google Scholar 

  9. Suman, S., Girimaji, S.: Velocity gradient invariants and local flow field topology in compressible turbulence. J. Turbul. 11, 1–24 (2010)

    Article  Google Scholar 

  10. Wang, L., Lu, X.: Flow topology in compressible turbulent boundary layer. J. Fluid Mech. 703, 255–278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chu, Y., Lu, X.: Topological evolution in compressible turbulent boundary layers. J. Fluid Mech. 733, 414–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cifuentes, L., Dopazo, C., Martin, J., Jimenez, C.: Local flow topologies and scalar structures in a turbulent premixed flame. Phys. Fluids 126(6), 065108/ 1–24 (2014)

    Google Scholar 

  13. Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227, 5105–5143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gicquel, O., Darabiha, N., Thevenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  15. Godel, G., Domingo, P., Vervisch, L.: Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames. Proc. Combust. Inst. 32, 1555–1561 (2008)

    Article  Google Scholar 

  16. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards, Philadelphia, PA (2005)

    Google Scholar 

  17. Borghi, R.: On the structure and morphology of turbulent premixed flames, Recent advances in aerospace sciences: in honor of Luigi Crocco on his seventy-fifth birthday, pp. 117–138. Plenum Press, New York (1985)

    Book  Google Scholar 

  18. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy. Combust. Sci. 28, 193–266 (2002)

    Article  Google Scholar 

  19. Cifuentes, L., Dopazo, C., Martin, J., Domingo, P., Vervisch, L.: Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame. Proc. Combust. Inst. 35, 1295–1303 (2014)

    Article  Google Scholar 

  20. Hunt, J., Wray, A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows, Studying Turbulence Using Numerical Simulation Databases II Rept. CTR-S88, Stanford, Calif. (1988)

  21. Tsinober, A., Ortenberg, M., Shtilman, L.: On depression of nonlinearity in turbulence. Phys. Fluids 11(8), 2291–2297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rutland, C., Trouve, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94, 41–57 (1993)

    Article  Google Scholar 

  23. Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. Phys. Rev. E 76, 056316/1-11 (2007)

    Article  Google Scholar 

  24. Renou, B., Boukhalfa, A., Puechberty, D., Trinite, M.: Effects of strech on the local structure of freely propagating premixed low-turbulent flames with various Lewis numbers. Proc. Comb. Inst. 27, 841–847 (1998)

    Article  Google Scholar 

  25. Chakraborty, N., Cant, R.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105/1-20 (2005)

    Google Scholar 

  26. Sankaran, R., Hawkes, E., Chen, J., Lu, T., Law, C.: Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Comsbust. Inst. 31, 1291–1298 (2007)

    Article  Google Scholar 

  27. Ashurst, W., Kerstein, A., Kerr, R., Gibson, C.: Alignment of vorticity and scalar gradient in simulated navier-stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)

    Article  Google Scholar 

  28. Kerr, R.M.: Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31–58 (1985)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Cifuentes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cifuentes, L., Dopazo, C., Martin, J. et al. Effects of the Local Flow Topologies Upon the Structure of a Premixed Methane-air Turbulent Jet Flame. Flow Turbulence Combust 96, 535–546 (2016). https://doi.org/10.1007/s10494-015-9686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9686-1

Keywords

Navigation