Skip to main content
Log in

Pulsed Flame for Syngas Production via Partial Methane Oxidation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The behavior of pulsed flame (PF) and its potential application as a source for syngas production was investigated. Methane/oxygen mixtures of different compositions with and without nitrogen dilution in the temperature range of 278-673 K were studied. This allowed to study the influence of operating temperature, equivalence ratio and dilution on the PF behavior and syngas production efficiency. The PF exhibits two different modes of flame propagation: one relatively slow (several m/s) observed for CH4/O2 mixtures diluted by nitrogen and another, very fast, with flame speed of ∼1300 m/s, observed for the mixtures containing only CH4 and O2 without nitrogen dilution. The exhaust gases emerging from the PF were analyzed by Gas Chromatography (GC) and Fiber Laser Absorption Spectroscopy (FLICAS) for CO:CO2 ratio. The CO:CO2 ratio observed in the PF exhaust was found to be higher than that observed in continuous flame, suggesting additional advantages for employing PF for syngas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowman, C., Hanson, R., Davidson, D., Gardiner, W., Lissianski, V., Smith, G., Golden, D., Frenklach, M., Wang, H., Goldenberg, M.: Gri mechanism ver 3.0 see http://www.me/berkeley.edu/gri_mech (1997)

  2. Cheskis, S., Derzy, I., Iogansen, A., Kalontarov, L.: Laser induced fluorescence in a pulsed propagated flame - a new technique for combustion studies. Combust. Sci. Technol. 104(4–6), 441–447 (1995)

    Article  Google Scholar 

  3. Dhamrat, R.S., Ellzey, J.L.: Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor. Combust. Flame 144(4), 698–709 (2006). doi:10.1016/j.combustflame.2005.08.038

    Article  Google Scholar 

  4. Fay, M., Dhamrat, R., Ellzey, J.L.: Effect of porous reactor design on conversion of methane to hydrogen. Combust. Sci. Technol. 177(11), 2171–2189 (2005). doi:10.1080/00102200500240828

    Article  Google Scholar 

  5. Fomin, A., Zavlev, T., Alekseev, V.A., Konnov, A.A., Rahinov, I., Cheskis, S.: Intracavity laser absorption spectroscopy study of HCO radicals during methane to hydrogen conversion in very rich flames. Energy Fuels 29, 6146–6154 (2015)

  6. Fomin, A., Zavlev, T., Rahinov, I., Cheskis, S.: A fiber laser intracavity absorption spectroscopy (flicas) sensor for simultaneous measurement of co and co2 concentrations and temperature. Sensors Actuat. B 210, 431–438 (2015)

    Article  Google Scholar 

  7. Goldman, A., Rahinov, I., Cheskis, S., Lohden, B., Wexler, S., Sengstock, K., Baev, V.M.: Fiber laser intracavity absorption spectroscopy of ammonia and hydrogen cyanide in low pressure hydrocarbon flames. Chem. Phys. Lett. 423(1–3), 147–151 (2006)

    Article  Google Scholar 

  8. Hunkemeier, J., Bohm, R., Baev, V., Toschek, P.: Spectral dynamics of multimode nd3+- and yb3+-doped fibre lasers with intracavity absorption. Opt. Commun 176(4–6), 417–428 (2000) ISI:000086357200017

    Article  Google Scholar 

  9. Kee, R., Rupley, F., Miller, J.: Chemkin-ii: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. rep., Livermore, CA (1989)

  10. Kennedy, L.A., Bingue, J.P., Saveliev, A.V., Fridman, A.A., Foutko, S.I.: Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. Proc. Combust. Inst. 28, 1431–1438 (2000)

    Article  Google Scholar 

  11. Loehden, B., Kuznetsova, S., Sengstock, K., Baev, V.M., Goldman, A., Cheskis, S., Palsdottir, B.: Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments. Appl. Phys. B-Lasers Opt. 102(2), 331–344 (2011). doi:10.1007/s00340-010-3995-9

    Article  Google Scholar 

  12. Pedersen-Mjaanes, H., Chan, L., Mastorakos, E.: Hydrogen production from rich combustion in porous media. Int. J. Hydro. Energy 30(6), 579–592 (2005). doi:10.1016/j.ijhydene.2004.05.006

    Article  Google Scholar 

  13. Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L.R., Campargue, A., Chance, K., Cohen, E.A., Coudert, L.H., Devi, V.M., Drouin, B.J., Fayt, A., Flaud, J.M., Gamache, R.R., Harrison, J.J., Hartmann, J.M., Hill, C., Hodges, J.T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R.J., Li, G., Long, D.A., Lyulin, O.M., Mackie, C.J., Massie, S.T., Mikhailenko, S., Mueller, H.S.P., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E.R., Richard, C., Smith, M.A.H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G.C., Tyuterev, V.G., Wagner, G.: The HITRAN2012 molecular spectroscopic database. Journal of Quant. Spectros. Radiative Transfer 130(SI), 4–50 (2013). doi:10.1016/j.jqsrt.2013.07.002

    Article  Google Scholar 

  14. Schoegl, I., Ellzey, J.L.: A mesoscale fuel reformer to produce syngas in portable power systems. Proc. Combust. Inst. 32, 3223–3230 (2009). doi:10.1016/j.proci.2008.06.079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Cheskis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, A., Zavlev, T., Tsionsky, V. et al. Pulsed Flame for Syngas Production via Partial Methane Oxidation. Flow Turbulence Combust 96, 363–375 (2016). https://doi.org/10.1007/s10494-015-9660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9660-y

Keywords

Navigation