Skip to main content
Log in

2-methylfuran Oxidation in the Absence and Presence of NO

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

2-methylfuran (2-MF) has become of interest as biofuel because of its properties and the improvement in its production method, and also because it is an important intermediate in the conversion of 2,5-dimethylfuran. In this research, an experimental and kinetic modelling study of the oxidation of 2-MF in the absence and presence of NO has been performed in an atmospheric pressure laboratory installation. The experiments were performed in a flow reactor and covered the temperature range from 800 to 1400 K, for mixtures from very fuel-rich to very fuel-lean, highly diluted in nitrogen. The inlet 2-MF concentration was 100 ppm. In the experiments in the presence of NO, the inlet NO concentration was 900 ppm. An interpretation of the experimental results was performed through a gas-phase chemical kinetic model. A reasonable agreement between the experimental trends and the modelling data is obtained. The results of the concentration profile of 2-MF as a function of temperature indicate that, both in the absence and in the presence of NO, the onset of 2-MF consumption is shifted to lower temperatures only under fuel-lean and very fuel-lean conditions. Furthermore, under these conditions the presence of NO also shifts the onset of 2-MF consumption to lower temperatures. The effect of the 2-MF presence on the NO reduction varies with the oxygen concentration. It is seen that under very fuel-rich and stoichiometric conditions NO is reduced basically by reburn reactions, while under fuel-lean and very fuel-lean conditions, the NO-NO2 interconversion appears to be dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Román-Leshkov, Y., Barret, C.J., Liu, Z.Y., Dumesic, J.A.: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447, 982–985 (2007)

    Article  Google Scholar 

  2. Zhao, H., Holladay, J.E., Brown, H., Zhang, Z.C.: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316, 1597–1600 (2007)

    Article  Google Scholar 

  3. Mascal, M., Nikitin, E.B.: Direct high-yield conversion of cellulose into biofuel. Angew. Chem. 47, 7924–7926 (2008)

    Article  Google Scholar 

  4. Alexandrino, K., Millera, A., Bilbao, R., Alzueta, M.U.: Interaction between 2,5-dimethylfuran and nitric oxide: experimental and modeling study. Energy Fuels 28, 4193–4198 (2014)

    Article  Google Scholar 

  5. Alexandrino, K., Millera, A., Bilbao, R., Alzueta, M.U.: Novel aspects in the pyrolysis and oxidation of 2,5-dimethylfuran. Proc. Combust. Inst. 35, 1717–1725 (2015)

    Article  Google Scholar 

  6. Thewes, M., Muether, M., Pischinger, S., Budde, M., Brunn, A., Sehr, A., Adomeit, P., Klankermayer, J.: Analysis of the impact of 2-methylfuran on mixture formation and combustion in a direct-injection spark-iginition engine. Energy Fuels 25, 5549–5561 (2011)

    Article  Google Scholar 

  7. Pan, M., Shu, G., Pan, J., Wei, H., Feng, D., Guo, Y., Liang, Y.: Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation. Fuel 132, 36–43 (2014)

    Article  Google Scholar 

  8. Wang, C., Xu, H., Daniel, R., Ghafourian, A., Herreros, J.M., Shuai, S., Ma, X.: Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine. Fuel 103, 200–211 (2013)

    Article  Google Scholar 

  9. Grela, M.A., Amorebieta, V.T., Colussi, A.J.: Very low pressure pyrolysis of furan, 2-methylfuran, and 2,5-dimethylfuran. The stability of the furan ring. J. Phys. Chem. 89, 38–41 (1985)

    Article  Google Scholar 

  10. Lifshitz, A., Tamburu, C., Shashua, R.: Decomposition of 2-methylfuran. Experimental and modeling study. J. Phys. Chem. A 101, 1018–1029 (1997)

    Article  Google Scholar 

  11. Wei, L., Li, Z., Tong, L., Wang, Z., Jin, H., Yao, M., Zheng, Z., Wang, C., Xu, H.: Primary combustion intermediates in lean and rich low-pressure premixed laminar 2-methylfuran/oxygen/argon flames. Energy Fuels 26, 6651–6660 (2012)

    Google Scholar 

  12. Ma, X., Jiang, C., Xu, H., Shuai, S., Ding, H.: Laminar burning characteristics of 2-methylfuran compared with 2,5-dimethylfuran and isooctane. Energy Fuels 27, 6212–6221 (2013)

    Article  Google Scholar 

  13. Ma, X., Jiang, C., Xu, H., Ding, H., Shuai, S.: Laminar burning characteristics of 2-methylfuran and isooctane blend fuels. Fuel 116, 281–291 (2014)

    Article  Google Scholar 

  14. Wei, L., Tang, C., Man, X., Huang, Z.: Shock-tube experiments and kinetic modeling of 2-methylfuran ignition at elevated pressure. Energy Fuels 27, 7809–7816 (2013)

    Article  Google Scholar 

  15. Uygun, Y., Ishihara, S., Olivier, H.: A high pressure ignition delay time study of 2-methylfuran and tetrahydrofuran in shock tubes. Combust. Flame 161, 2519–2530 (2014)

    Article  Google Scholar 

  16. Eldeeb, M.A., Akih-Kumgeh, B.: Reactivity trends in furan and alkyl furan combustion. Energy Fuels 28, 6618–6626 (2014)

    Article  Google Scholar 

  17. Xu, N., Tang, C., Meng, X., Fan, X., Tian, Z., Huang, Z.: Experimental and kinetic study on the ignition delay times of 2,5-dimethylfuran and the comparison to 2-methylfuran and furan, Energy Fuels, doi:10.1021/acs.energyfuels.5b00906 (2015)

  18. Davis, A.C., Sarathy, S.M.: Computational study of the combustion and atmospheric decomposition of 2-methylfuran. J. Phys. Chem. A 117, 7670–7685 (2013)

    Article  Google Scholar 

  19. Somers, K.P., Simmie, J.M., Gillespie, F., Burke, U., Connolly, J., Metcalfe, W.K., Battin-Leclerc, F., Dirrenberger, P., Herbinet, O., Glaude, P.-A., Curran, H.J.: A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation. Proc. Combust. Inst. 34, 225–232 (2013)

    Article  Google Scholar 

  20. Somers, K., Simmie, J., Metcalfe, W., Curran, H.: The pyrolysis of 2-MF: a quantum chemical, statistical rate theory and kinetic modeling study. Phys. Chem. Chem. Phys. 16, 5349–5367 (2014)

    Article  Google Scholar 

  21. Liu, D., Togbé, C., Tran, L.S., Felsmann, D., Oßwald, P., Nau, P., Koppmann, J., Lackner, A., Glaude, P.A., Sirjean, B., Fournet, R., Battin-Leclerc, F., Kohse-Höinghaus, K.: Combustion chemistry and flame structure of furan group using molecular-beam mass spectrometry and gas chromatography–Part I: Furan. Combust. Flame 161, 748–765 (2014)

    Article  Google Scholar 

  22. Tran, L.S., Togbé, C., Liu, D., Felsmann, D., Oßwald, P., Glaude, P.-A., Fournet, R., Sirjean, B., Battin-Leclerc, F., Kohse-Höinghaus, K.: Combustion chemistry and ?ame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography–Part II: 2-methylfuran. Combust. Flame 161, 766–779 (2014)

    Article  Google Scholar 

  23. Togbé, C., Tran, L.S., Liu, D., Felsmann, D., Oßwald, P., Glaude, P.A., Sirjean, B., Fournet, R., Battin-Leclerc, F., Kohse-Höinghaus, K.: Combustion chemistry and flame structure of furan group using molecular-beam mass spectrometry and gas chromatography–Part III: 2,5-dimethylfuran. Combust. Flame 161, 780–797 (2014)

    Article  Google Scholar 

  24. Sirjean, B., Fournet, R., Glaude, P.A., Battin-Leclerc, F., Wang, W., Oehlschlaeger, M.A.: Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran. J. Phys. Chem. A. 117, 1371–1392 (2013)

    Article  Google Scholar 

  25. Tian, Z., Yuan, T., Fournet, R., Glaude, P.A., Sirjean, B., Battin-Leclerc, F., Zhang, K., Qi, F.: An experimental and kinetic investigation of premixed furan/oxygen/flames. Combust. Flame 158, 756–773 (2011)

    Article  Google Scholar 

  26. Moshammer, K., Lucassen, A., Togbé, C., Kohse-Höinghaus, K., Hansen, N.: Formation of oxygenated and hydrocarbon intermediates in premixed combustion of 2-methylfuran. Z. Phys. Chem. 229, 507–528 (2015)

    Article  Google Scholar 

  27. Glarborg, P., Alzueta, M.U., Dam-Johansen, K., Miller, J.A.: Kinetic modeling of hydrocarbon nitric oxide interactions in a flow reactor. Combust. Flame 115, 1–27 (1998)

    Article  Google Scholar 

  28. Abián, M., Silva, S.L., Millera, A., Bilbao, R., Alzueta, M.U.: Effect of operating conditions on NO reduction by acetylene-ethanol mixtures. Fuel Process Technol. 91, 1204–1211 (2010)

    Article  Google Scholar 

  29. Kristensen, P.G., Glarborg, P., Dam-Johansen, K.: Nitrogen chemistry during burnout in fuel-staged combustion. Combust. Flame 107, 211–222 (1996)

    Article  Google Scholar 

  30. Yanfeng, G., Shenghua, L., Hejun, G., Tiegang, H., Longbao, Z.: A new diesel oxygenate additive and its effects on engine combustion and emissions. Appl. Therm. Eng. 27, 202–207 (2007)

    Article  Google Scholar 

  31. Yao, C., Cheung, C.S., Cheng, C., Wang, Y., Chan, T.L., Lee, S.C.: Effect of Diesel/methanol compound combustion on Diesel engine combustion and emissions. Energ. Convers. Manag. 49, 1696–1704 (2008)

    Article  Google Scholar 

  32. Alzueta, M.U., Finestra, M., Bilbao, R.: Methanol oxidation and its interaction with nitrogen oxide. Energy Fuels 15, 724–729 (2001)

    Article  Google Scholar 

  33. Alzueta, M.U., Hernández, J.M.: Ethanol oxidation and its interaction with nitric oxide. Energy Fuels 16, 166–171 (2002)

    Article  Google Scholar 

  34. Glarborg, P., Alzueta, M.U., Kjaergaard, K., Dam-Johansen, K.: Oxidation of formaldehyde and its interaction with nitric oxide in a flow reactor. Combust. Flame 132, 629–638 (2003)

    Article  Google Scholar 

  35. Alzueta, M.U., Borruey, M., Callejas, M.A., Millera, A., Bilbao, R.: An experimental and modeling study of the oxidation of acetylene in a flow reactor. Combust. Flame 152, 377–386 (2008)

    Article  Google Scholar 

  36. Alzueta, M.U., Aranda, V., Monge, F., Millera, A., Bilbao, R.: Oxidation of methyl formate and its interaction with nitric oxide. Combust. Flame 160, 853–860 (2013)

    Article  Google Scholar 

  37. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Laboratories. SAND89-8009B (1989)

  38. CHEMKIN-PRO 15131, Reaction Design, San Diego (2013)

  39. Bilbao, R., Alzueta, M.U., Millera, A.: Experimental study of the influence of the operating variables on natural gas reburning efficiency. Ind. Eng. Chem. Res. 34, 4531–4539 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María U. Alzueta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 486 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrino, K., Millera, Á., Bilbao, R. et al. 2-methylfuran Oxidation in the Absence and Presence of NO. Flow Turbulence Combust 96, 343–362 (2016). https://doi.org/10.1007/s10494-015-9635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9635-z

Keywords

Navigation