Skip to main content
Log in

Effects of Lewis Number on Head on Quenching of Turbulent Premixed Flames: A Direct Numerical Simulation Analysis

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The head on quenching of statistically planar turbulent premixed flames by an isothermal inert wall has been analysed using three-dimensional Direct Numerical Simulation (DNS) data for different values of global Lewis number Le(0.8, 1.0 and 1.2) and turbulent Reynolds number R e t . The statistics of head on quenching have been analysed in terms of the wall Peclet number P e (i.e. distance of the flame from the wall normalised by the Zel’dovich flame thickness) and the normalised wall heat flux Φ. It has been found that the maximum (minimum) value of Φ(P e) for the turbulent L e=0.8 cases are greater (smaller) than the corresponding laminar value, whereas both P e and Φ in turbulent cases remain comparable to the corresponding laminar values for L e=1.0 and 1.2. Detailed physical explanations are provided for the observed Le dependences of P e and Φ. The existing closure of mean reaction rate \(\overline {\dot {\omega }}\) using the scalar dissipation rate (SDR) in the near wall region has been assessed based on a-priori analysis of DNS data and modifications to the existing closures of mean reaction rate and SDR have been suggested to account for the wall effects in such a manner that the modified closures perform well both near to and away from the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Heywood, J.B.: Internal combustion engine fundamentals. Mcgraw-Hill, New York (1988)

    Google Scholar 

  2. Poinsot, T., Veynante, D.: Theoretical and numerical combustion (2005)

  3. Poinsot, T., Haworth, D., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118–132 (1993)

    Article  Google Scholar 

  4. Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.: Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107, 27–44 (1996)

    Article  Google Scholar 

  5. Bruneaux, G., Poinsot, T., Ferziger, J.: Premixed flame-wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191–219 (1997)

    Article  MATH  Google Scholar 

  6. Alshaalan, T.M., Rutland, C.J.: Turbulence, scalar transport, and reaction rates in flame-wall interaction. Proc. Combust. Inst. 27, 793–799 (1998)

    Article  Google Scholar 

  7. Alshaalan, T., Rutland, C.J.: Wall heat flux in turbulent premixed reacting flow. Combust. Sci. Technol. 174, 135–165 (2002)

    Article  Google Scholar 

  8. Gruber, A., Sankaran, R., Hawkes, E., Chen, J.: Turbulent flame-wall interaction: a direct numerical simulation study. J Fluid Mech. 658, 5–32 (2010)

    Article  MATH  Google Scholar 

  9. Dabireau, F., Cuenot, B., Vermorel, O., Poinsot, T.: Interaction of flames of H 2+O 2 with inert walls. Combust. Flame 135, 123–133 (2003)

    Article  Google Scholar 

  10. Cebeci, T., Cousteix, J.: Modeling and computation of boundary-layer flows. Springer (2005)

  11. Bilger, R.: Some aspects of scalar dissipation. Flow. Turb. Combust. 72, 93–114 (2004)

    Article  MATH  Google Scholar 

  12. Bray, K.: Turbulent flows with premixed reactants. In: Turbulent reacting flows, 115-183. Springer (1980)

  13. Chakraborty, N., Champion, M., Mura, A., Swaminathan, N.: Scalar dissipation rate approach to reaction rate closure. In: Swaminathan, N., Bray, K.N.C. (eds.) Turbulent premixed flame, pp 76–1023. Cambridge University Press, Cambridge (2011)

  14. Borghi, R.: Turbulent premixed combustion: Further discussions on the scales of fluctuations. Combust. Flame 80, 304–312 (1990)

    Article  Google Scholar 

  15. Mantel, T., Borghi, R.: A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443–457 (1994)

    Article  Google Scholar 

  16. Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133, 193–196 (2003)

    Article  Google Scholar 

  17. Swaminathan, N., Bray, K.: Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame 143, 549–565 (2005)

    Article  Google Scholar 

  18. Chakraborty, N., Swaminathan, N.: Influence of the Damkohler number on turbulence-scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19, 045103 (2007)

    Google Scholar 

  19. Chakraborty, N., Swaminathan, N.: Influence of the Damkohler number on turbulence-scalar interaction in premixed flames. II. Model development. Phys. Fluids 19, 045104 (2007)

    Google Scholar 

  20. Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Theor. Modell. 12, 671–698 (2008)

    Article  MATH  Google Scholar 

  21. Mura, A., Robin, V, Champion, M., Hasegawa, T.: Small-scale features of velocity and scalar fields of turbulent premixed flames. Flow Turbul. Combust. 82, 339–358 (2009)

    Article  MATH  Google Scholar 

  22. Kolla, H., Rogerson, J., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modeling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)

    Article  Google Scholar 

  23. Chakraborty, N., Swaminathan, N.: Effects of Lewis number on scalar dissipation transport and its modelling implications for turbulent premixed combustion. Combust. Sci. Technol. 182, 1201–1240 (2010)

    Article  Google Scholar 

  24. Chakraborty, N., Swaminathan, N.: Effects of Lewis number on scalar variance transport in premixed flames. Flow Turb. Combust. 87, 261–292 (2011)

    Article  MATH  Google Scholar 

  25. Chakraborty, N., Swaminathan, N.: Effects of turbulent Reynolds number on the scalar dissipation rate transport in turbulent premixed flames in the context of Reynolds Averaged Navier Stokes simulations. Combust. Sci. Technol. 185, 676–709 (2013)

    Article  Google Scholar 

  26. Mizomoto, M., Asaka, S., Ikai, S., Law, C.: Effects of preferential diffusion on the burning intensity of curved flames. Proc. Combust. Inst. 20, 1933–1940 (1984)

    Article  Google Scholar 

  27. Dinkelacker, F., Manickam, B., Muppala, S.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame 158, 1742–1749 (2011)

    Article  Google Scholar 

  28. Clavin, P., Williams, F.: Effects of molecular diffusion and of thermal expansion on the structure and dynamics of premixed flames in turbulent flows of large scale and low intensity. J. Fluid Mech. 116, 251–282 (1982)

    Article  MATH  Google Scholar 

  29. Pelce, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)

    Article  MATH  Google Scholar 

  30. Sivashinsky, G.I.: Instabilities, pattern formation, and turbulence in flames. An. Rev. Fluid Mech. 15, 179–199 (1983)

    Article  Google Scholar 

  31. Abdel-Gayed, R., Bradley, D., Hamid, M., Lawes, M.: Lewis number effects on turbulent burning velocity. Proc. Combust. Inst. 20, 505–512 (1985)

    Article  Google Scholar 

  32. Libby, P.A., Linan, A., Williams, F.A.: Strained premixed laminar flames with nonunity lewis numbers. Combust. Sci. Technol. 34, 257–293 (1983)

    Article  Google Scholar 

  33. Renou, B., Boukhalfa, A., Puechberty, D., Trinite, M.: Effects of stretch on the local structure of preely propagating premixed low-turbulent flames with various Lewis numbers. Proc. Combust. Inst. 27, 841–847 (1998)

    Article  Google Scholar 

  34. Haworth, D., Poinsot, T.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)

    Article  Google Scholar 

  35. Rutland, C., Trouve, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94, 41–57 (1993)

    Article  Google Scholar 

  36. Trouve, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chakraborty, N., Cant, R.: Influence of lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105 (2005)

    Article  Google Scholar 

  38. Chakraborty, N., Klein, M.: Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids 20, 065102 (2008)

    Article  Google Scholar 

  39. Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and lewis numbers in turbulent premixed combustion. Combust. Flame 152, 194–205 (2008)

    Article  Google Scholar 

  40. Chakraborty, N., Cant, R.: Effects of lewis number on scalar transport in turbulent premixed flames. Phys. Fluids 21, 035110 (2009)

    Article  Google Scholar 

  41. Chakraborty, N., Cant, R.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 1768–1787 (2011)

    Article  Google Scholar 

  42. Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E., Klasky, S., Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., et al.: Terascale direct numerical simulations of turbulent combustion using s3d. Comput. Sci. Discov. 2, 015001 (2009)

    Article  Google Scholar 

  43. Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed CH 4-air and H 2-air flames: A comparative study. Combust. Flame 154, 259–280 (2008)

    Article  Google Scholar 

  44. Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)

    Article  Google Scholar 

  45. Echekki, T., Chen, J.H.: Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118, 303–311 (1999)

    Google Scholar 

  46. Chakraborty, N., Kolla, H., Sankaran, R., Hawkes, E.R., Chen, J.H., Swaminathan, N.: Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: Direct Numerical Simulation based validation. Proc. Combust. Inst. 34, 1151–1162 (2013)

    Article  Google Scholar 

  47. Jenkins, K.W., Cant, R.S.: Direct numerical simulation of turbulent flame kernels. In: Recent Advances in DNS and LES, 191–202. Springer (1999)

  48. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large Eddy simulation of turbulent premixed combustion, Proc. Combust. Inst. 27, 917–925 (1998)

    Article  Google Scholar 

  49. Swaminathan, N., Grout, R.G.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)

    Article  MathSciNet  Google Scholar 

  50. Chakraborty, N., Hartung, G., Katragadda, M., Kaminski, C.F.: A numerical comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed. Combust. Flame 158, 1372–1390 (2011)

    Article  Google Scholar 

  51. Dopazo, C, Cifuentes, L., Martin, J., Jimenez, C.: Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame. Combust. Flame 158, 1729–1736 (2015)

    Article  Google Scholar 

  52. Poinsot, T.J., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wray, A.A.: Minimal storage time advancement schemes for spectral methods, unpublished report. NASA Ames Research Center, California (1990)

    Google Scholar 

  54. Rogallo, R.S.: Numerical experiments in homogeneous turbulence. NASA Ames Research Center, California (1981)

    Google Scholar 

  55. Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  56. Huang, W.M., Vosen, S.R., Greif, R.: Heat transfer during laminar flame quenching. Proc. Combust. Inst. 21, 1853–1860 (1986)

    Article  Google Scholar 

  57. Jarosinsky, J.: A survey of recent studies on flame extinction. Combust. Sci. Technol 12, 81–116 (1986)

    Article  Google Scholar 

  58. Vosen, S.R., Greif, R., Westbrook, C.: Unsteady heat transfer in laminar quenching. Proc. Combust. Inst 20, 76–83 (1984)

    Google Scholar 

  59. Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – Part I: General Formulation. Combust. Flame 61, 87–102 (1985)

    Article  Google Scholar 

  60. Tennekes, H., Lumley, J.L.: A first course in turbulence. MIT press, Massachusetts (1972)

    Google Scholar 

  61. Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)

    Article  Google Scholar 

  62. Malkeson, S.P., Chakraborty, N: Alignment statistics of active and passive scalar gradients in turbulent stratified flames. Phys. Rev. E 83(4), 046308 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, J., Chakraborty, N. Effects of Lewis Number on Head on Quenching of Turbulent Premixed Flames: A Direct Numerical Simulation Analysis. Flow Turbulence Combust 96, 279–308 (2016). https://doi.org/10.1007/s10494-015-9629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9629-x

Keywords

Navigation