Skip to main content
Log in

Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The flow over a circular cylinder at Reynolds number 3900 and Mach number 0.2 was predicted numerically using the technique of large-eddy simulation. The computations were carried out with an O-type curvilinear grid of size of 300 × 300 × 64. The numerical simulations were performed using a second-order finite-volume method with central-difference schemes for the approximation of convective terms. A conventional Smagorinsky and a dynamic k-equation eddy viscosity sub-grid scale models were applied. The integration time interval for data sampling was extended up to 150 vortex shedding periods for the purpose of obtaining a fully converged mean flow field. The present numerical results were found to be in good agreement with existing experimental data and previously obtained large-eddy simulation results. This gives an indication on the adequacy and accuracy of the selected large-eddy simulation technique implemented in the OpenFOAM toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. J. Comput. Fluids. 35, 1126–1136 (2006)

    Article  MATH  Google Scholar 

  2. Beaudan, P., Moin, P.: Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Technical Report TF-62, CTR Annual Research Briefs, NASA Ames/Stanford University (1994)

  3. Breuer, M.: Large eddy simulation of the sub-critical flow past a circular cylinder: numerical and modeling aspects. Int. J. Numer. Methods Fluids 28, 1281–1302 (1998)

    Article  MATH  Google Scholar 

  4. Cardell, G.S.: Flow past a circular cylinder with permeable splitter plate. Data taken from Mittal [29] (1993)

  5. Chorin, A.: Numerical solution of Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D.: A combined direct numerical simulation particle image velocimetry study of the turbulent air wake. J. Fluid Mech. 569, 185–207 (2006)

    Article  MATH  Google Scholar 

  7. Franke, J., Frank, W.: Large eddy simulation of the flow past a circular cylinder at Re = 3900. J. Wind Eng. Ind. Aerod. 90, 1191–1206 (2002)

    Article  Google Scholar 

  8. Fureby, C.: Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44, 381–396 (2008)

    Article  Google Scholar 

  9. Fureby, C.: On subgrid scale modeling in large eddy simulations of compressible fluid flow. Phys. Fluids 8(5), 1301–1311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fureby, C., Tabor, G., Weller, H.G., Gosman, A.D.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5), 1416–1429 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, New York (2009)

    Book  MATH  Google Scholar 

  12. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  13. Geurts, B.: Elements of Direct and Large-Eddy Simulation. R.T. Edwards, Philadelphia (2004)

    Google Scholar 

  14. Hadjadj, A., Kudryavtsev, A.: Computation and flow visualization in high-speed aerodynamics. J. Turbul. 6(16), 33–81 (2005)

    MathSciNet  Google Scholar 

  15. Hestens, M., Steifel, E.: Methods of conjugate gradients for solving systems of algebraic equations. J. Res. Natl. Bur. Stand 29, 409–436 (1952)

    Article  Google Scholar 

  16. Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jacobs, D.: Preconditioned conjugate gradient methods for solving systems of algebraic equations. Tech. rep., Central Electricity Research Laboratories, Leatherhead, Surrey, England (1980)

  18. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kravchenko, A., Moin, P.: Numerical studies of flow over a circular cylinder at Re=3900. Phys. Fluids 12(2), 403–417 (2000)

    Article  MATH  Google Scholar 

  20. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  21. Lourenco, L.M., Shih, C.: Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study. Published in Ref. [2] (1993)

  22. Lysenko, D.A., Ertesvåg, I.S., Rian K.E.: Testing of OpenFOAM CFD code for plane turbulent bluff body flows within conventional URANS approach. In: Proceedings, 8th Int. Conf. on CFD in Oil and Gas, Metallurgical and Process Industries. Trondheim (2011)

  23. Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Turbulent bluff body flows modeling using OpenFOAM technology. In: Skallerud, B., Andersson, H.I. (eds.) MekIT’11-Sixth National Conference on Computational Mechanics, pp. 189–208. Trondheim (2011)

  24. Lysenko, D.A., Ertesvåg, I.S., Rian K.E.: Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids (2012). doi:10.1016/j.compfluid.2012.01.015

    Google Scholar 

  25. Löhner, R.: Increasing the number of cores for industrial/legacy codes: approaches, implementation and timings. In: Proceedings, 23rd, Int. Conf. on Parallel Computational Fluid Dynamics, ParCFD 2011. Barcelona (2011)

  26. Ma, X., Karamanos, G.S., Karniadakis, G.E.: Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 29–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mani, A., Moin, P., Wang, M.: Computational study of optical distortions by separated shear layers and turbulent wakes. J. Fluid Mech. 625, 273–298 (2009)

    Article  MATH  Google Scholar 

  28. Meyer, M., Hickel, S., Adams, N.A.: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. Int. J. Heat Fluid Flow 31, 368–377 (2010)

    Article  Google Scholar 

  29. Mittal, R.: Progress on LES of flow past a circular cylinder. In: Annual Research Briefs, Center of Turbulence Research, pp. 233–241. Stanford University (1996)

  30. Mittal, R., Moin, P.: Suitability of upwind biased schemes for large-eddy simulation. AIAA J. 30(8), 1415–1417 (1997)

    Article  Google Scholar 

  31. Norberg, C.: Experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287–316 (1994)

    Article  Google Scholar 

  32. Norberg, C.: Flow around a circular cylinder: aspects of fluctuating lift. J. Fluids Struct. 15, 459–469 (2001)

    Article  Google Scholar 

  33. Ong, L., Wallace, J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids. 20, 441–453 (1996)

    Article  Google Scholar 

  34. Ouvrard, H., Koobus, B., Dervieux, A., Salvetti, M.V.: Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput. Fluids 39, 1083–1094 (2010)

    Article  MATH  Google Scholar 

  35. Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20(8), 085101 (2008)

    Article  Google Scholar 

  36. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Prasad A., Williamson, C.H.K.: The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375–402 (1997)

    Article  MathSciNet  Google Scholar 

  38. Shanbhogue, S.J., Husain, S., Lieuwen, T.: Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35, 98–120 (2009)

    Article  Google Scholar 

  39. Smagorinsky, J.S.: General circulation experiments with primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  40. Son, J., Hanratty, T.: Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105. J. Fluid Mech. 35, 353–368 (1969)

    Article  Google Scholar 

  41. Vreman, A.W., Geurts, B.J., Kuerten, J.G.M.: Subgrid-modelling in LES of compressible flow. Appl. Sci. Res. 54, 191–203 (1995)

    Article  MATH  Google Scholar 

  42. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(6), 70–73 (1967)

    Article  MathSciNet  Google Scholar 

  43. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  44. Wissink, J.G., Rodi, W.: Numerical study of the near wake of a circular cylinder. Int. J. Heat Fluid Flow 29, 1060–1070 (2008)

    Article  Google Scholar 

  45. Wornom, S., Ouvrard, H., Salvetti, M.V., Koobus, B., Dervieux, A.: Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects. Comput. Fluids 47(1), 44–50 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Lysenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysenko, D.A., Ertesvåg, I.S. & Rian, K.E. Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox. Flow Turbulence Combust 89, 491–518 (2012). https://doi.org/10.1007/s10494-012-9405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9405-0

Keywords

Navigation