Skip to main content
Log in

Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider the existence of infinitely many solutions to the boundary value Problem

$\frac{d} {{dt}}\left( {\frac{1} {2}0D_t^{ - \beta } (u'(t)) + \frac{1} {2}tD_T^{ - \beta } (u'(t))} \right) + \nabla F(t,u(t)) = 0a.e.t \in [0,T],u(0) = u(T) = 0.$

Under more general assumptions on the nonlinearity, we obtain new criteria to guarantee that this boundary value problem has infinitely many solutions in the superquadratic, subquadratic and asymptotically quadratic cases by using the critical point theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ambrosetti, P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bai: Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem. Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 176, 9 pages.

  3. C. Bai: Existence of three solutions for a nonlinear fractional boundary value problem via a critical points theorem. Abstr. Appl. Anal. 2012 (2012), Article ID 963105, 13 pages.

  4. P. Bartolo, V. Benci, D. Fortunato: Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal., Theory Methods Appl. 7 (1983), 981–1012.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. A. Benson, S.W. Wheatcraft, M. M. Meerschaert: Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (2000), 1403–1412, DOI:10.1029/2000WR900031.

    Article  Google Scholar 

  6. G. Bin: Multiple solutions for a class of fractional boundary value problems. Abstr. Appl. Anal. 2012 (2012), Article ID 468980, 16 pages.

  7. J. Chen, X. H. Tang: Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory. Abstr. Appl. Anal. 2012 (2012), Article No. 648635, 21 pages.

  8. J. Chen, X. H. Tang: Infinitely many solutions for a class of fractional boundary value problem. Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 1083–1097.

    MathSciNet  MATH  Google Scholar 

  9. D. C. Clark: A variant of the Lusternik-Schnirelman theory. Indiana Univ. Math. J. 22 (1972), 65–74.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. J. Ervin, J. P. Roop: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equations 22 (2006), 558–576.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. J. Fix, J. P. Roop: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48 (2004), 1017–1033.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. R. Graef, L. Kong, Q. Kong: Multiple solutions of systems of fractional boundary value problems. Appl. Anal. 94 (2015), 1288–1304.

    Article  MathSciNet  Google Scholar 

  13. S. Heidarkhani: Infinitely many solutions for nonlinear perturbed fractional boundary value problems. An. Univ. Craiova, Ser. Mat. Inf. 41 (2014), 88–103.

    MathSciNet  MATH  Google Scholar 

  14. M. Izydorek, J. Janczewska: Homoclinic solutions for a class of the second order Hamiltonian systems. J. Differ. Equations 219 (2005), 375–389.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Jiao, Y. Zhou: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62 (2011), 1181–1199.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Jiao, Y. Zhou: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 (2012), Article ID 1250086, 17 pages.

  17. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.

    Book  MATH  Google Scholar 

  18. L. Kong: Existence of solutions to boundary value problems arising from the fractional advection dispersion equation. Electron. J. Differ. Equ. (electronic only) 2013 (2013), Article No. 106, 15 pages.

  19. F. Li, Z. Liang, Q. Zhang: Existence of solutions to a class of nonlinear second order two-point boundary value problems. J. Math. Anal. Appl. 312 (2005), 357–373.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y.-N. Li, H.-R. Sun, Q.-G. Zhang: Existence of solutions to fractional boundary-value problems with a parameter. Electron. J. Differ. Equ. (electronic only) 2013 (2013), Article No. 141, 12 pages.

  21. J. Mawhin, M. Willem: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences 74, Springer, New York, 1989.

    MATH  Google Scholar 

  22. K. S. Miller, B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, New York, 1993.

    Google Scholar 

  23. N. Nyamoradi: Infinitely many solutions for a class of fractional boundary value problems with Dirichlet boundary conditions. Mediterr. J. Math. 11 (2014), 75–87.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Podlubny: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198, Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  25. P. H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Reg. Conf. Ser. Math. 65. American Mathematical Society, Providence, 1986.

    Google Scholar 

  26. S. G. Samko, A. A. Kilbas, O. I. Marichev: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York, 1993.

    MATH  Google Scholar 

  27. H.-R. Sun, Q.-G. Zhang: Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique. Comput. Math. Appl. 64 (2012), 3436–3443.

    Article  MathSciNet  MATH  Google Scholar 

  28. X. H. Tang: Infinitely many solutions for semilinear Schrödinger equations with signchanging potential and nonlinearity. J. Math. Anal. Appl. 401 (2013), 407–415.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Willem: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications 24, Birkhäuser, Boston, 1996.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Hua Tang.

Additional information

The work was supported by the NSFC (No. 11501190) and Hunan Provincial Natural Science Foundation (No. 2015JJ6037) and by Scientific Research Fund of Hunan Provincial Education Department (No. 14C0465).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Tang, X.H. Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation. Appl Math 60, 703–724 (2015). https://doi.org/10.1007/s10492-015-0118-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-015-0118-2

Keywords

MSC 2010

Navigation