Skip to main content
Log in

DSHMP-IOT: A distributed self healing movement prediction scheme for internet of things applications

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The IOT infrastructure - IP-based mobile sensor network- makes it possible to provide two-directional communication between mobile sensors and the remote server. Mobility direction prediction is a major challenge in IP-based networks by which we can predict the next movement direction of moving objects carrying mobile node(s). In this paper, we have introduced a Distributed Self-Healing Movement Prediction scheme for IOT applications, so-called DSHMP-IOT, to predict movement direction of mobile IP-based sensors in a multi-user environment, such as a health-care system. This is the first time that an AI solution is applied to predict the direction of the mobile node(s) in an IP-based mobile network. The proposed scheme takes advantage of Hidden Semi-Markov Model (HSMM) to predict the movement direction with high accuracy and low overhead. The previous works for estimating the direction of a mobile node(s) in IP-based mobile networks are based on AOA, a hardware-specific method. The proposed scheme has several advantages. First, it eliminates the need for special hardware (directional antenna, an antenna array, etc.) which is required in AOA based methods. Second, it is not sensitive to noise, speed and sudden changing of movement direction which cause false positive movement direction prediction in AOA method. Third, in this context, it is the only work with self-healing capability whenever one or more static sensors fail(s). Fourth, it includes a recovery mechanism which prevents the mobile node from being disconnected in case of false prediction of our learning model. The simulation results show the superiority of our scheme regarding power consumption and hand-off delay, as well as packet loss, compared to similar approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Akoush S, Sameh A (2007) Mobile user movement prediction using bayesian learning for neural networks. In: Proceedings of the 2007 International Conference on Wireless Communications and Mobile Computing, IWCMC ’07. doi:10.1145/1280940.1280982, pp 191–196

  2. Alemdar H, Ersoy C (2010) Wireless sensor networks for healthcare: a survey. Comput Netw 54(15):2688–2710

    Article  Google Scholar 

  3. Asahara A, Maruyama K, Shibasaki R (2012) A mixed autoregressive hidden-markov-chain model applied to peoples movements. In: Proceedings of the 20th international conference on advances in geographic information systems, 414–417, ACM, New York, NY, USA

  4. Bag G, Raza MT, Kim KH, Yoo SW (2009) Lowmob: Intra-pan mobility support schemes for 6lowpan. Sensors (Basel, Switzerland) 9(7):5844–5877

    Article  Google Scholar 

  5. Baratchi M, Meratnia N, Havinga P (2013) Finding frequently visited paths: Dealing with the uncertainty of spatio-temporal mobility data. In: 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp 479–484. doi:10.1109/ISSNIP.2013.6529837

  6. Baratchi M, Meratnia N, Havinga PJM (2013) On the use of mobility data for discovery and description of social ties. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM ’13, pp 1229–1236. doi:10.1145/2492517.2500263

  7. Baratchi M, Meratnia N, Havinga PJM, Skidmore AK, Toxopeus BAKG (2014) A hierarchical hidden semi-markov model for modeling mobility data. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp 401–412. doi:10.1145/2632048.2636068

  8. Bhuiyan M, et al (2010) Prediction-based energy-efficient target tracking protocol in wireless sensor networks. J Cent S Univ Technol 17(2):340–348

    Article  MathSciNet  Google Scholar 

  9. Bouaziz M, Rachedi A (2014) A survey on mobility management protocols in wireless sensor networks based on 6lowpan technology. Comput Commun 52:–. doi:10.1016/j.comcom.2014.10.004

  10. Dunkels A, Gronvall B, Voigt T (2004) Contiki - a lightweight and flexible operating system for tiny networked sensors. In: 29th Annual IEEE International Conference on Local Computer Networks, 2004, pp 455–462. doi:10.1109/LCN.2004.38

  11. Joakim sterlind EF, Finne N, Tsiftes N, Dunkels A, Voigt T, Sauter R, Marrn PJ (2009) Cooja/mspsim: Interoperability testing for wireless sensor networks. In: Proceedings of the 2Nd International Conference on Simulation Tools and Techniques, pp 1–7. doi:10.4108/ICST.SIMUTOOLS2009.5637

  12. Fahim M, Fatima I, Lee S, Lee Y (2013) Eem: evolutionary ensembles model for activity recognition in smart homes. Appl Intell 38(1):88–98

    Article  Google Scholar 

  13. Ferguson JD (1980) Variable duration models for speech. In: Proceedings of the symposium on the application of HMMs to text and speech, pp 143–179

  14. Fotouhi Hossein Alves MKABN (2010) On a reliable handoff procedure for supporting mobility in wireless sensor networks. In: 9Th international workshop on real-time networks

  15. Furey E, Curran K, McKevitt P (2012) Habits: a bayesian filter approach to indoor tracking and location. Int J Bio-Inspired Comput 4(2):79–88. doi:10.1504/IJBIC.2012.047178

    Article  Google Scholar 

  16. Gazis V, Sasloglou K, Frangiadakis N, Kikiras P (2012) Wireless sensor networking, automation technologies and machine to machine developments on the path to the internet of things. In: 2012 16th Panhellenic Conference on Informatics (PCI), pp 276–282

  17. Gellert A, Vintan L (2006) Person movement prediction using hidden markov models. Studies Inform Control 15:17–30

    Google Scholar 

  18. Ha M, Kim D, Kim SH, Hong S (2010) Inter-mario: a fast and seamless mobility protocol to support inter-pan handover in 6lowpan. In: Global telecommunications conference (GLOBECOM 2010), 2010 IEEE, pp 1–6

  19. Harri J, Filali F, Bonnet C (2009) Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun Surv Tutorials 11(4):19–41. doi:10.1109/SURV.2009.090403

    Article  Google Scholar 

  20. Huang X, Ariki Y, Jack M (1990) Hidden markov models for speech recognition columbia university press

  21. Islam MM, Huh EN (2011) Sensor proxy mobile ipv6 (spmipv6)-a novel scheme for mobility supported ip-wsns. Sensors (Basel, Switzerland) 11(2):1865–1887. doi:10.3390/s110201865

    Article  Google Scholar 

  22. Khalil N, Abid M, Benhaddou D, Gerndt M (2014) Wireless sensors networks for internet of things. In: 2014 IEEE ninth international conference on Intelligent sensors, sensor networks and information processing (ISSNIP), pp 1–6

  23. Kim SY, Cho SB (2014) Predicting destinations with smartphone log using trajectory-based hmms. In: 4th international conference on mobile services, pp 6–11

  24. Kulkarni P (2007) Requirements and design spaces of mobile medical care. ACM SIGMOBILE Mobile Comput Commun Rev 11(3):12–30

    Article  Google Scholar 

  25. Kung HT, Vlah D (2003) Efficient location tracking using sensor networks. In: Wireless communications and networking, 2003. WCNC 2003. 2003 IEEE, vol 3, pp 1954–1961. IEEE

  26. Lee JG, Han J, Li X (2008) Trajectory outlier detection: A partition-and-detect framework. In: IEEE 24th International Conference on Data Engineering, 2008. ICDE 2008, pp 140–149. doi:10.1109/ICDE.2008.4497422

  27. Lee Y, Ow L, Ling D (2014) Hidden markov models for forex trends prediction. In: 2014 International Conference on Information Science and Applications (ICISA), pp 1–4. doi:10.1109/ICISA.2014.6847408

  28. Liu T, Chen W, Liu CH, Fu X (2012) Benefits and costs of uniqueness in multiple object tracking: The role of object complexity. Vis Res 66:31–38

    Article  Google Scholar 

  29. Mathew W, Raposo R, Martins B (2012) Predicting future locations with hidden markov models. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12, pp 911–918. doi:10.1145/2370216.2370421. ACM, New York

  30. Montavont J, Roth D, No T (2014) Mobile {IPv6} in internet of things: Analysis, experimentations and optimizations. Ad Hoc Netw 14:15–25. doi:10.1016/j.adhoc.2013.11.001

  31. Murphy KP (2002) Hidden semi-markov models (hsmms) unpublished notes 2

  32. Osterlind F, Dunkels A, Eriksson J, Finne N, Voigt T (2006) Cross-level sensor network simulation with cooja. In: Proceedings 2006 31st IEEE Conference on Local Computer Networks, pp 641–648. doi:10.1109/LCN.2006.322172

  33. Pattem S, Poduri S, Krishnamachari B (2003) Energy-quality tradeoffs for target tracking in wireless sensor networks. In: Information processing in sensor networks, pp 32–46. Springer

  34. Qiao S, Tang C, Jin H, Long T, Dai S, Ku Y, Chau M (2010) Putmode: prediction of uncertain trajectories in moving objects databases. Appl Intell 33(3):370–386

    Article  Google Scholar 

  35. Ramya K, Kumar KP, Rao VS (2012) A survey on target tracking techniques in wireless sensor networks. Int J Comput Sci Eng Surv 3(4):93

    Article  Google Scholar 

  36. Samarah S, Al-Hajri M, Boukerche A (2011) A predictive energy-efficient technique to support object-tracking sensor networks. IEEE Trans Veh Technol 60(2):656–663

    Article  Google Scholar 

  37. Shahamabadi MS, Ali BBM, Varahram P, Jara AJ (2013) A network mobility solution based on 6lowpan hospital wireless sensor network (nemo-hwsn). In: Proceedings of the 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS ’13, pp 433–438. doi:10.1109/IMIS.2013.157

  38. Shang X, Zhang R, Chu F (2013) An inter-pan mobility support scheme for ip-based wireless sensor networks and its applications. Inf Technol Manag 14(3):183–192. doi:10.1007/s10799-013-0155-z

    Article  Google Scholar 

  39. Si H, Wang Y, Yuan J, Shan X (2010) Mobility prediction in cellular network using hidden markov model. In: Consumer Communications and Networking Conference (CCNC), 2010 7th IEEE, pp 1–5. doi:10.1109/CCNC.2010.5421684

  40. Silva R, Silva JS, Boavida F (2014) Mobility in wireless sensor networks, survey and proposal. Comput Commun 52(1):1–20. doi:10.1016/j.comcom.2014.05.008

    Article  Google Scholar 

  41. Tran Le Hung MCLKM, Aberer K (2012) Next place prediction using mobile data. In: Proceedings of the mobile data challenge workshop

  42. Wang X, Le D, Cheng H (2015) Mobility management for 6lowpan wireless sensor networks in critical environments. Int J Wireless Inf Networks 22(1):41–52

    Article  Google Scholar 

  43. Wang X, Le D, Yao Y, Xie C (2015) Location-based mobility support for 6lowpan wireless sensor networks. J Netw Comput Appl 49:68–77

    Article  Google Scholar 

  44. Wang X, Le Deguang CH, Xie C (2014) All-ip wireless sensor networks for real-time patient monitoring. J Biomed Inform 52:406–417. doi:10.1016/j.jbi.2014.08.002

    Article  Google Scholar 

  45. Wang X, Qian H (2013) Research on all-ip communication between wireless sensor networks and {IPv6} networks. Comput Standards Interfaces 35(4):403–414. doi:10.1016/j.csi.2012.12.001

    Article  Google Scholar 

  46. Wang X, Zhong S, Zhou R (2012) A mobility support scheme for 6lowpan. Comput Commun 35(3):392–404. doi:10.1016/j.comcom.2011.11.001

    Article  Google Scholar 

  47. Whittaker J (2009) Graphical models in applied multivariate statistics wiley publishing

  48. Wilcox RR (2009) Basic statistics: understanding conventional methods and modern insights Oxford University Press

  49. Xiaonan W, Hongbin C (2016) Research on seamless mobility handover for 6lowpan wireless sensor networks. Telecommun Syst 61(1):141–157

    Article  Google Scholar 

  50. Xu Y, Winter J, Lee WC (2004) Dual prediction-based reporting for object tracking sensor networks. In: The first annual international conference on Mobile and ubiquitous systems: Networking and services, MOBIQUITOUS 2004, pp 154–163. IEEE

  51. Xu Y, Winter J, Lee WC (2004) Prediction-based strategies for energy saving in object tracking sensor networks. In: Proceedings of the 2004 IEEE international conference on Mobile data management, 2004, pp 346–357. IEEE

  52. Xue L, Liu Z, Guan X (2011) Prediction-based protocol for mobile target tracking in wireless sensor networks. J Syst Eng Electron 22(2):347–352

    Article  Google Scholar 

  53. Yang H, Sikdar B (2003) A protocol for tracking mobile targets using sensor networks. In: Proceedings of the 1st IEEE, 2003 IEEE international workshop on Sensor network protocols and applications, 2003, pp 71–81. IEEE

  54. Yu SZ, Kobayashi H (2003) A hidden semi-markov model with missing data and multiple observation sequences for mobility tracking. Signal Process 83(2):235–250

    Article  MATH  Google Scholar 

  55. Zhao F, Shin J, Reich J (2002) Information-driven dynamic sensor collaboration. IEEE Signal Process Mag 19(2):61–72

    Article  Google Scholar 

  56. Zinonos Z, Vassiliou V (2010) Inter-mobility support in controlled 6lowpan networks. In: GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp 1718–1723. doi:10.1109/GLOCOMW.2010.5700235

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Zamanifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamanifar, A., Nazemi, E. & Vahidi-Asl, M. DSHMP-IOT: A distributed self healing movement prediction scheme for internet of things applications. Appl Intell 46, 569–589 (2017). https://doi.org/10.1007/s10489-016-0849-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0849-0

Keywords

Navigation