Skip to main content
Log in

Multi-circle detection on images inspired by collective animal behavior

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Hough transform (HT) has been the most common method for circle detection that delivers robustness but adversely demands considerable computational efforts and large memory requirements. As an alternative to HT-based techniques, the problem of shape recognition has also been handled through optimization methods. In particular, extracting multiple circle primitives falls into the category of multi-modal optimization as each circle represents an optimum which must be detected within the feasible solution space. However, since all optimization-based circle detectors focus on finding only a single optimal solution, they need to be applied several times in order to extract all the primitives which results on time-consuming algorithms. This paper presents an algorithm for automatic detection of multiple circular shapes that considers the overall process as a multi-modal optimization problem. In the detection, the approach employs an evolutionary algorithm based on the way in which the animals behave collectively. In such an algorithm, searcher agents emulate a group of animals which interact to each other using simple biological rules. These rules are modeled as evolutionary operators. Such operators are applied to each agent considering that the complete group maintains a memory which stores the optimal solutions seen so-far by applying a competition principle. The detector uses a combination of three non-collinear edge points as parameters to determine circle candidates (possible solutions). A matching function determines if such circle candidates are actually present in the image. Guided by the values of such matching functions, the set of encoded candidate circles are evolved through the evolutionary algorithm so that the best candidate (global optimum) can be fitted into an actual circle within the edge-only image. Subsequently, an analysis of the incorporated memory is executed in order to identify potential local optima which represent other circles. Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. da Fontoura Costa L, Marcondes Cesar R, Jr (2001) Shape analysis and classification. CRC Press, Boca Raton

    MATH  Google Scholar 

  2. Atherton TJ, Kerbyson DJ (1993) Using phase to represent radius in the coherent circle hough transform. In: Proc, IEE colloquium on the hough transform. IEE, London

    Google Scholar 

  3. Shaked D, Yaron O, Kiryati N (1996) Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Comput Vis Image Underst 63:512–526

    Article  Google Scholar 

  4. Xu L, Oja E, Kultanen P (1990) A new curve detection method: randomized Hough transform (RHT). Pattern Recognit Lett 11(5):331–338

    Article  MATH  Google Scholar 

  5. Han JH, Koczy LT, Poston T (1993) Fuzzy Hough transform. In: Proc 2nd int conf on fuzzy systems, vol 2, pp 803–808

    Google Scholar 

  6. Becker J, Grousson S, Coltuc D (2002) From Hough transforms to integral geometry. In: Proc int geoscience and remote sensing symp, 2002 IGARSS_02, vol 3, pp 1444–1446

    Google Scholar 

  7. Jiang L (2012) Efficient randomized Hough transform for circle detection using novel probability sampling and feature points. Optik 123(10):1834–1840

    Article  Google Scholar 

  8. Valova I, Milano G, Bowen K, Gueorguieva N (2011) Bridging the fuzzy, neural and evolutionary paradigms for automatic target recognition. Appl Intell 35(2):211–225

    Article  Google Scholar 

  9. An S-Y, Kang J-G, Choi W-S, Oh S-Y (2011) A neural network based retrainable framework for robust object recognition with application to mobile robotics. Appl Intell 35(2):190–210

    Article  Google Scholar 

  10. Ayala-Ramirez V, Garcia-Capulin CH, Perez-Garcia A, Sanchez-Yanez RE (2006) Circle detection on images using genetic algorithms. Pattern Recognit Lett 27:652–657

    Article  Google Scholar 

  11. Cuevas E, Ortega-Sánchez N, Zaldivar D, Pérez-Cisneros M (2012) Circle detection by harmony search optimization. J Intell Robot Syst 66(3):359–376

    Article  Google Scholar 

  12. Cuevas E, Oliva D, Zaldivar D, Pérez-Cisneros M, Sossa H (2012) Circle detection using electro-magnetism optimization. Inf Sci 182(1):40–55

    Article  Google Scholar 

  13. Cuevas E, Zaldivar D, Pérez-Cisneros M, Ramírez-Ortegón M (2011) Circle detection using discrete differential evolution optimization. PAA Pattern Anal Appl 14(1):93–107

    Article  MathSciNet  Google Scholar 

  14. Dasgupta S, Das S, Biswas A, Abraham A (2010) Automatic circle detection on digital images with an adaptive bacterial foraging algorithm. Soft Comput 14(11):1151–1164

    Article  Google Scholar 

  15. Li Y, Zeng X (2010) Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. Appl Intell 32(3):292–310

    Article  Google Scholar 

  16. Das S, Maity S, Qub B, Suganthan PN (2011) Real-parameter evolutionary multimodal optimization—a survey of the state-of-the-art. Swarm Evol Comput 1:71–88

    Article  Google Scholar 

  17. Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Proc of the second international conference on genetic algorithms (ICGA), New Jersey

    Google Scholar 

  18. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, pp 1942–1948

    Google Scholar 

  19. Norouzzadeh MS, Ahmadzadeh MR, Palhang M (2012) LADPSO: using fuzzy logic to conduct PSO algorithm. Appl Intell 37(2):290–304

    Article  Google Scholar 

  20. Ben Ali YM (2012) Psychological model of particle swarm optimization based multiple emotions. Appl Intell 36(3):649–663

    Article  MathSciNet  Google Scholar 

  21. Liang J, Qin AK, Suganthan PN (2006) Comprehensive learning particle swarm optimizer for global optimization of multi-modal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  22. Chen DB, Zhao CX (2009) Particle swarm optimization with adaptive population size and its application. Appl Soft Comput 9(1):39–48

    Article  Google Scholar 

  23. Xu Q, Lei W, Si J (2010) Predication based immune network for multimodal function optimization. Eng Appl Artif Intell 23:495–504

    Article  Google Scholar 

  24. Sumper D (2006) The principles of collective animal behaviour. Philos Trans R Soc Lond B, Biol Sci 361(1465):5–22

    Article  Google Scholar 

  25. Petit O, Bon R (2010) Decision-making processes: the case of collective movements. Behav Process 84:635–647

    Article  Google Scholar 

  26. Kolpas A, Moehlis J, Frewen T, Kevrekidis I (2008) Coarse analysis of collective motion with different communication mechanisms. Math Biosci 214:49–57

    Article  MathSciNet  MATH  Google Scholar 

  27. Couzin I (2008) Collective cognition in animal groups. Trends Cogn Sci 13(1):36–43

    Article  Google Scholar 

  28. Couzin ID, Krause J (2003) Self-organization and collective behavior in vertebrates. Adv Study Behav 32:1–75

    Article  Google Scholar 

  29. Bode N, Franks D, Wood A (2010) Making noise: emergent stochasticity in collective motion. J Theor Biol 267:292–299

    Article  MathSciNet  Google Scholar 

  30. Couzi I, Krause I, James R, Ruxton G, Franks N (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11

    Article  Google Scholar 

  31. Couzin ID (2007) Collective minds. Nature 445:715–728

    Article  Google Scholar 

  32. Bazazi S, Buhl J, Hale JJ, Anstey ML, Sword GA, Simpson SJ, Couzin ID (2008) Collective motion and cannibalism in locust migratory bands. Curr Biol 18:735–739

    Article  Google Scholar 

  33. Hsu Y, Earley R, Wolf L (2006) Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol Rev 81(1):33–74

    Article  Google Scholar 

  34. Ballerini M (2008) Interaction ruling collective animal behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci USA 105:1232–1237

    Article  Google Scholar 

  35. Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

    Google Scholar 

  36. Gandomi AH, Yang X-S, Alavi AH (2011) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput. doi:10.1007/s00366-011-0241-y

    Google Scholar 

  37. Zang H, Zhang S, Hapeshi K (2010) A review of nature-inspired algorithms. J Bionics Eng 7:S232–S237

    Article  Google Scholar 

  38. Gandomi A, Alavi A (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  39. Bresenham JE (1977) A linear algorithm for incremental digital display of circular arcs. Commun ACM 20:100–106

    Article  MATH  Google Scholar 

  40. Van Aken JR (2005) Efficient ellipse-drawing algorithm. IEEE Comput Graph Appl 4(9):24–35

    Article  Google Scholar 

  41. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  Google Scholar 

  42. Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics. doi:10.1007/s10732-008-9080-4

    Google Scholar 

  43. Santamaría J, Cordón O, Damas S, García-Torres JM, Quirin A (2008) Performance evaluation of memetic approaches in 3D reconstruction of forensic objects. Soft Comput. doi:10.1007/s00500-008-0351-7

    Google Scholar 

  44. Chen T-C, Chung K-L (2001) An efficient randomized algorithm for detecting circles. Comput Vis Image Underst 83:172–191

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuevas, E., González, M. Multi-circle detection on images inspired by collective animal behavior. Appl Intell 39, 101–120 (2013). https://doi.org/10.1007/s10489-012-0396-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-012-0396-2

Keywords

Navigation