Skip to main content
Log in

Dold–Kan Correspondence, Revisited

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We describe Dold–Kan correspondence for an idempotent complete additive category \({{\mathscr {A}}}\). Our approach is based on a family of idempotents in \({\mathbb {Z}}\Delta \). We represent the obtained normalised complex equivalence of the category of simplicial objects in \({{\mathscr {A}}}\) and the category of non-negatively graded chain complexes in \({{\mathscr {A}}}\), \(N:s{{\mathscr {A}}}\rightarrow \text {Ch}_{\geqslant 0}({{\mathscr {A}}})\), as a coend. Explicit formulae for the right adjoint equivalence \(K:\text {Ch}_{\geqslant 0}({{\mathscr {A}}})\rightarrow s{{\mathscr {A}}}\) are obtained. It is shown that the functors NK preserve the homotopy relation. Similar results are obtained for cosimplicial objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. https://www.math.uchicago.edu/~may/IMA/Joyal.pdf.

References

  1. Aguiar, M., Mahajan, S.: Monoidal functors, species and Hopf algebras, CRM Monograph series, vol. 29. AMS, Providence, RI (2010). http://www.math.tamu.edu/~maguiar/a.pdf With forewords by Kenneth Brown and Stephen Chase and André Joyal

  2. Comes, J., Wilson, B.: Deligne’s category \({{{\rm Re}}{\rm p}}(GL_\delta )\) and representations of general linear supergroups. Represent. Theory 16, 568–609 (2012). arXiv:1108.0652

  3. Dold, A.: Homology of symmetric products and other functors of complexes. Ann. Math. 68(1), 54–80 (1958)

    Article  MathSciNet  Google Scholar 

  4. Eilenberg, S., Mac Lane, S.: On the groups \(H(\Pi , n)\). I. Ann. Math. Second Ser. 58(1), 55–106 (1953). https://doi.org/10.2307/1969820

    Article  Google Scholar 

  5. Eilenberg, S., Mac Lane, S.: On the groups \(H(\Pi , n)\). II. Methods of computation. Ann. Math. Second Ser. 60(1), 49–139 (1954). https://doi.org/10.2307/1969702

    Article  MathSciNet  Google Scholar 

  6. Goerss, P.F., Jardine, J.F.: Simplicial homotopy theory, Progress in Mathematics, vol. 174. Birkhäuser Verlag, Basel (1999)

  7. Kan, D.M.: Functors involving c.s.s. complexes. Trans. Am. Math. Soc. 87(2), 330–346 (1958). https://doi.org/10.1090/S0002-9947-1958-0131873-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Kargapolov, M.I., Merzlyakov, J.I.: Fundamentals of the theory of groups, Graduate Texts in Mathematics, vol. 62, 2nd edn. Springer, New York, Berlin (1979). Translated from the second Russian edition by Robert G. Burns

  9. Karoubi, M.: \(K\)-théorie. Les Presses de l’Université de Montréal (1971)

  10. Loregian, F.: (Co)end calculus. In: London Mathematical Society Lecture Note Series, vol. 468. Cambridge University Press, Cambridge (2021). arXiv:1501.02503

  11. Lurie, J.: Higher Algebra. Harvard University (2017). https://www.math.ias.edu/~lurie/papers/HA.pdf

  12. Mac Lane, S.: Homology. No. 114 in Die Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg (1963)

  13. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A first introduction to topos theory, corrected reprint of the 1992nd edn. Universitext. Springer, New York (1994)

  14. Rezk, C.: Answer to: A more natural proof of Dold–Kan? (2015). https://mathoverflow.net/questions/195936/a-more-natural-proof-of-dold-kan

  15. Saint-Donat, B.: Techniques de descente cohomologique. In: M. Artin, A. Grothendieck, J.L. Verdier (eds.) Théorie des topos et cohomologie étale des schémas. Tome 2, no. 270, Lect. Notes in Math., exposé Vbis, pp. 84–161. Springer-Verlag, Berlin, New York (1972). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4)

  16. Weibel, C.A.: An introduction to Homological Algebra, Cambridge Studies in Adv. Math., vol. 38. Cambridge University Press, Cambridge (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Lyubashenko.

Ethics declarations

Conflicts of interest

No competing interests are related to this research.

Additional information

Communicated by D. N. Yetter.

To the memory of Ukrainian mathematician Sergiy Adamovych Ovsienko.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubashenko, V. Dold–Kan Correspondence, Revisited. Appl Categor Struct 30, 543–567 (2022). https://doi.org/10.1007/s10485-021-09665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-021-09665-7

Keywords

Mathematics Subject Classification

Navigation