Skip to main content
Log in

The Gray Tensor Product Via Factorisation

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We discuss the folklore construction of the Gray tensor product of 2-categories as obtained by factoring the map from the funny tensor product to the cartesian product. We show that this factorisation can be obtained without using a concrete presentation of the Gray tensor product, but merely its defining universal property, and use it to give another proof that the Gray tensor product forms part of a symmetric monoidal structure. The main technical tool is a method of producing new algebra structures over Lawvere 2-theories from old ones via a factorisation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories: The Joy of Cats (2006). Reprints in Theory and Applications of Categories

  2. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, vol. 189 of London Mathematical Society Lecture Note Series. Cambridge University Press (1994)

  3. Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar, vol. 47 of Lecture Notes in Mathematics. Springer, 1967, pp. 1–77

  4. Blackwell, R., Kelly, G.M., Power, A.J.: Two-dimensional monad theory. J. Pure Appl. Algebra 59(1), 1–41 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borceux, F.: Handbook of Categorical Algebra 2, vol. 51 of Encyclopedia of Mathematics and its Applications. Cambridge University Press (1994)

  6. Bourke, J.: Two-dimensional monadicity. Adv. Math. 252, 708–747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourke, J., Garner, R.: On semiflexible, flexible and pie algebras. J. Pure Appl. Algebra 217(3), 293–321 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cassidy, C., Hébert, M., Kelly, G.M.: Reflective subcategories, localizations and factorization systems. J. Australian Math. Society Series A 38(3), 287–329 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, J.: Coherence for rewriting 2-theories. PhD thesis, Australian National University (2009)

  10. Day, B., Laplaza, M.: On embedding closed categories. Bull. Aust. Math. Soc. 18(3), 357–371 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gordon, R., Power, J., Street, R.: Coherence for Tricategories. Memoirs of the American Mathematical Society, 117 (1995)

  12. Gray, J.: 2-Algebraic Theories and Triples. In: Colloques sur l’algebre des categories. Amiens 1973. Resumes des conferences. (2015), vol. 14, pp. 178–180

  13. Gray, J.W.: Formal Category Theory: Adjointness for 2-Categories, vol. 391 of Lecture Notes in Mathematics. Springer (1974)

  14. Gray, J.W.: Coherence for the tensor product of 2-categories and braid groups. Algebra, topology and category theory: a collection of papers in honour of Samuel Eilenberg (1976)

  15. Gurski, N.: Coherence in Three-Dimensional Category Theory. Cambridge University Press (2013)

  16. Kelly, G.M., Lack, S.: Finite-product-preserving functors, Kan extensions and strongly-finitary 2-monads. Appl. Categ. Struct. 1(1), 85–94 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lack, S.: Icons. Appl. Categ. Struct. 18(3), 289–307 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lack, S., Power, J.: Two-dimensional Lawvere theories. In: preparation

  19. Lack, S., Power, J.: Lawvere 2-theories. Presented at CT2007, Coimbra (2007)

  20. Lack, S., Rosický, J.: Notions of Lawvere Theory. Appl. Categ. Struct. 1, 363–391 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lawvere, F.W.: Functorial Semantics of Algebraic Theories. Columbia University, PhD thesis (1963)

  22. Power, A.J.: Enriched Lawvere Theories. Theory and Applications of Categories 6(7), 83–93 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Power, J.: Discrete Lawvere Theories. In: Algebra and coalgebra in computer science, vol. 3629 of Lecture notes in Computer Science. Springer, Berlin, pp 348–363 (2015)

  24. Yanofsky, N.: The syntax of coherence. Cahiers de Topologie et Geométrie Différentielle Catégoriques 41(4), 255–304 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Yanofsky, N.: Coherence, homotopy and 2-theories. K-Theory 23(3), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bourke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourke, J., Gurski, N. The Gray Tensor Product Via Factorisation. Appl Categor Struct 25, 603–624 (2017). https://doi.org/10.1007/s10485-016-9467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-016-9467-6

Keywords

Mathematics Subject Classification (2010)

Navigation