Skip to main content
Log in

Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord-Shulman and dual-phase-lag models

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

wave number

a c, b c :

magnitudes of thermoelastic diffusion

B :

magnetic induction vector

C :

strength of diffusion

C E :

specialized heat per unit mass

d :

thermoelastic diffusion constant

e ij :

component of the strain tensor

E :

electric intensity vector

F i :

Lorentz’s body force vector

g :

gravity field

g*:

intrinsic equilibrated body force

h :

perturbed magnetic field vector

H 0 :

primary constant magnetic field vector

H :

magnetic field vector

J :

electric current density vector

K :

thermal conductivity

m :

thermo-void coefficient

P :

initial stress

q i :

heat flux vector

t :

time of wave

T 0 :

reference temperature

χ :

equilibrated inertia

S i :

component of the equilibrated stress vector

T :

temperature

α, b, ω 0, ζ :

void material parameters

α t :

coefficient of linear thermal extension

α c :

coefficient of linear diffusion extension

δ ij :

Kronecker delta

ε 0 :

electric permeability

η :

entropy per unit mass

λ, μ :

Lame’s constants

μ r :

magnetic permeability

ρ :

density

σ ij :

component of the stress tensor

λij :

Maxwell’s stress tensor

τ 1 :

phase-lag of the heat flux

τ Θ :

phase-lag of the temperature gradient

ω :

complex frequency

τ 2, τ η :

diffusion relaxation time

Φv :

change in the volume fraction field

Ω:

angular velocity

References

  1. BIOT, M. A. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27, 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. LORD, H. W. and SHULMAN, Y. A. Generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  3. COIN, S. C. and NUNZIATO, J. W. Linear elastic materials with voids. Journal of Elasticity, 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  4. AOUADI, M. Generalized theory of thermoelasic diffusion for an anisotropic media. Journal of Thermal Stresses, 31, 270–285 (2008)

    Article  Google Scholar 

  5. AOUADI, M. Uniqueness and reciprocity theorem in the theory of generalized thermoelastic diffusion. Journal of Thermal Stresses, 30, 665–678 (2007)

    Article  MathSciNet  Google Scholar 

  6. AOUADI, M. A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion. International Journal of Solids and Structure, 44, 5711–5722 (2007)

    Article  MATH  Google Scholar 

  7. SINGH, B. Reflection of SV waves from the free surface of an elastic solid in generalized thermoelastic diffusion. Journal of Sound and Vibrations, 291, 764–778 (2006)

    Article  MATH  Google Scholar 

  8. SINGH, B. Reflection of P and SV waves from free surface of an elastic soild with generalized thermodiffusion. Journal of Earth System Science, 114, 159–168 (2005)

    Article  Google Scholar 

  9. NOWACKI, W. Dynamical problems of thermoelastic diffusion in solids I. Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Techniques, 22, 55–64 (1974)

    Google Scholar 

  10. NOWACKI, W. Dynamical problems of thermoelastic diffusion in solids II. Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Techniques, 22, 129–135 (1974)

    Google Scholar 

  11. NOWACKI, W. Dynamical problems of thermoelastic diffusion in solids III. Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Techniques, 22, 275–266 (1974)

    Google Scholar 

  12. OLESIAK, Z. S. and PYRYEV, Y. A. A coupled quasi-Stationary problem of thermodifusion for an elastic cylinder. International Journal of Engineering Science, 33, 773–780 (1995)

    Article  MATH  Google Scholar 

  13. SHERIEF, H. H. and SALEH, H. A half-space problem in the theory of generalized thermoelastic diffusion. International Journal of Solids and Structure, 42, 4484–4493 (2005)

    Article  MATH  Google Scholar 

  14. RAM, R., SHARMA, N., and KUMAR, R. Thermomechanical response of generalized thermoelastic diffusion with one relaxation time due to time harmonic sources. International Journal of Thermal Sciences, 47, 315–323 (2008)

    Article  Google Scholar 

  15. BAYONES, F. S. The influence of diffusion on generalized magneto-thermo-viscoelastic problem of a homogenyous isotropic material. Advances in Theoretical and Applied Mechanics, 5, 69–92 (2012)

    Google Scholar 

  16. ABO-DAHAB, S. M. and SINGH, B. Influences of magnetic field on wave propagation in generalized thermoelastic solid with diffusion. Archives of Mechanics, 61, 121–136 (2009)

    MathSciNet  MATH  Google Scholar 

  17. XIA, R., TIAN, X., and SHEN, Y. The influence of diffusion on generalized thrmoelastic problems of infinite body with a cylindrical cavity. International Journal of Engineering Science, 47, 669–679 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. ALLAM, M. N. M., RIDA, S. Z., ABO-DAHAB, S. M., MOHAMED, R. A., and KILANY, A. A. GL model on reflection of P and SV waves from the free surface of thermo-elastic diffusion solid under influence of the electromagnetic field and initial stress. Journal of Thermal Stresses, 37, 471–487 (2014)

    Article  Google Scholar 

  19. ABOUELREGAL, A. E. and ABO-DAHAB, S. M. Dual-phase-lag diffusion model for Thomson’s phenomenon on electromagneto-thermoelastic an infinitely solid cylinder. Journal of Computational and Theoretical Nanoscience, 11, 1–9 (2014)

    Article  Google Scholar 

  20. ABO-DAHAB, S. M. S-waves propagation in a non-homogeneous anisotropic incompressible medium under influences of gravity field, initial stress, electromagnetic field and rotation. Applied Mathematics and Information Sciences, 1, 363–376 (2016)

    Article  Google Scholar 

  21. KUMAR, S. R. and KUMAR, R. Wave propagation and fundamental solution of initially stressed thermoelastic diffusion with voids. Journal of Solid Mechanics, 3, 298–314 (2011)

    Google Scholar 

  22. ABD-ALLA, A. M., ABD-ALLA, A. N., and ZEIDAN, N. A. Thermal stresses in a non-homogeneous orthotropic elastic multilayered cylinder. Journal of Thermal Stresses, 23, 313–428 (2000)

    Google Scholar 

  23. ABD-ALLA, A. M. and ABO-DAHAB, S. M. Effect of rotation and initial stress on an infinite generalized magneto-thermoelastic diffusion body with a spherical cavity. Journal of Thermal Stresses, 35, 892–912 (2012)

    Article  Google Scholar 

  24. YOUSEF, H. M. and EL-BARY, A. A. Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity. Journal of Thermal Stresses, 37, 1379–1389 (2014)

    Article  Google Scholar 

  25. KUMAR, R. and GUPTA, V. Wave propagation at the boundary surface of inviscid fluid half-space and thermoelastic diffusion solid half-space with dual-phase-lag models. Journal of Solid Mechanics, 7, 312–332 (2015)

    Google Scholar 

  26. KUMAR, R. and GUPTA, V. Dual-phase-lag models of wave propagation at the interface between elastic and thermoelastic diffusion media Journal of Engineering Physics and Thermophysics, 88, 247–259 (2015)

    Google Scholar 

  27. SUR, A. and KANORIA, M. Three-phase-lag elasto-thermodiffusive response in an elastic solid under hydrostatic pressure International Journal of Applied Mathematics and Mechanics, 3, 121–137 (2015)

    MathSciNet  MATH  Google Scholar 

  28. OTHMAN, M. I. A. and ABD-ELAZIZ, E. M. The effect of thermal loading due to laser pulse in generalized thermoelastic medium with voids in dual phase lag model. Journal of Thermal Stresses, 38, 1068–1082 (2015)

    Article  Google Scholar 

  29. KUMAR, R., SINGH, R. L., and GARG, S. K. Axi-symmetric propagation in a thermoelastic diffusion with phase lags. Journal of Science and Technology, 3, 82–96 (2016)

    Google Scholar 

  30. ABOUELREGAL, A. E. A problem of a semi-infinite medium subjected to exponential heating using a dual-phase-lag thermoelastic model. Applied Mathematics, 2, 619–624 (2011)

    Article  MathSciNet  Google Scholar 

  31. KUMAR, R. and KANSAL, T. Propagation of plane waves and fundamental solution in the theories of thermoelastic diffusive materials with voids. International Journal of Applied Mathematics and Mechanics, 8, 84–103 (2012)

    Google Scholar 

  32. XIONG, Q. L. and TIAN, X. G. Effect of initial stress on a fiber-reinforced thermoelastic porous media without energy dissipation. Transport in Porous Media, 111, 81–95 (2016)

    Article  MathSciNet  Google Scholar 

  33. XIONG, Q. L. and TIAN, X. G. Transient magneto-thermo-elasto-diffusive responses of rotating porous media without energy dissipation under thermal shock. Meccanica, 51, 2435–2447 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. XIONG, Q. L., CHU, X., and CHENG, L. Generalized thermo-elasto-diffusive responses on fiber-reinforced anisotropic half-space under five generalized thermoelasticities. High Temperatures-High Pressures, 47, 443–464 (2018)

    Google Scholar 

  35. ABO-DAHAB, S. M. Propagation of P waves from stress-free surface elastic half-space with voids under thermal relaxation and magnetic field, Applied Mathematical Modelling, 34, 1798–1806 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. ABO-DAHAB, S. M., MOHAMED, R. A., RIDA, S. Z., and KILANY, A. A. Rotation, initial stress, gravity and electromagnetic field effect on P wave reflection from stress-free surface elastic half-space with voids under three thermoelastic models. Mechanics and Mechanical Engineering, 22, 313–328 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kilany.

Additional information

Citation: ABO-DAHAB, S. M., ABD-ALLA, A. M., and KILANY, A. A. Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord-Shulman and dual-phase-lag models. Applied Mathematics and Mechanics (English Edition) 40(8), 1135–1154 (2019) https://doi.org/10.1007/s10483-019-2504-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Dahab, S.M., Abd-Alla, A.M. & Kilany, A.A. Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord-Shulman and dual-phase-lag models. Appl. Math. Mech.-Engl. Ed. 40, 1135–1154 (2019). https://doi.org/10.1007/s10483-019-2504-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2504-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation