Skip to main content
Log in

Optimal control of attitude for coupled-rigid-body spacecraft via Chebyshev-Gauss pseudospectral method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The attitude optimal control problem (OCP) of a two-rigid-body spacecraft with two rigid bodies coupled by a ball-in-socket joint is considered. Based on conservation of angular momentum of the system without the external torque, a dynamic equation of three-dimensional attitude motion of the system is formulated. The attitude motion planning problem of the coupled-rigid-body spacecraft can be converted to a discrete nonlinear programming (NLP) problem using the Chebyshev-Gauss pseudospectral method (CGPM). Solutions of the NLP problem can be obtained using the sequential quadratic programming (SQP) algorithm. Since the collocation points of the CGPM are Chebyshev-Gauss (CG) points, the integration of cost function can be approximated by the Clenshaw-Curtis quadrature, and the corresponding quadrature weights can be calculated efficiently using the fast Fourier transform (FFT). To improve computational efficiency and numerical stability, the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of state and control variables. Furthermore, numerical float errors of the state differential matrix and barycentric weights can be alleviated using trigonometric identity especially when the number of CG points is large. A simple yet efficient method is used to avoid sensitivity to the initial values for the SQP algorithm using a layered optimization strategy from a feasible solution to an optimal solution. Effectiveness of the proposed algorithm is perfect for attitude motion planning of a two-rigid-body spacecraft coupled by a ball-in-socket joint through numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krishnaprasad, P. S. Geometric phases and optimal reconfiguration for multibody systems. American Control Conference, 1990, 2440–2444 (1990)

    Google Scholar 

  2. Chen, C. K. and Sreenath, N. Control of coupled spatial two-body systems with nonholonomic constraints. IEEE Conference on Decision and Control, 2, 949–954 (1993)

    Google Scholar 

  3. Kolmanovsky, I., McClamroch, N. H., and Coppola, V. T. New results on control of multibody systems which conserve angular momentum. Journal of Dynamical and Control Systems, 1, 447–462 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Reyhanoglu, M. and McClamroch, N. H. Planar reorientation maneuvers of space multibody systems using internal controls. Journal of Guidance Control and Dynamics, 15, 1475–1480 (1992)

    Article  MATH  Google Scholar 

  5. Fernandes, C., Gurvits, L., and Li, Z. X. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies. IEEE Transactions on Automatic Control, 39, 450–463 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xia, Y. Q., Zhu, Z., Fu, M. Y., and Wang, S. Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Transactions on Industrial Electronics, 58, 647–659 (2011)

    Article  Google Scholar 

  7. Ge, X. S. and Guo, Z. X. Attitude motion planning of dual rigid bodies spacecraft using spline approximation. Scientia Sinica Physica Mechanica and Astronomica, 43, 407–414 (2013)

    Article  Google Scholar 

  8. Ge, X. S. and Chen, L. Q. Optimal control of nonholonomic motion planning for a free-falling cat. Applied Mathematics and Mechanics (English Edition), 28, 601–607 (2007) DOI 10.1007/s10483-007-0505-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Benson, D. A. A Gauss Pseudospectral Transcription for Optimal Control, Ph. D. dissertation, Massachusetts Institute of Technology, Cambridge, 1–243 (2005)

    Google Scholar 

  10. Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V. Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance Control and Dynamics, 29, 1435–1439 (2006)

    Article  Google Scholar 

  11. Fahroo, F. and Ross, I. M. Direct trajectory optimization by a Chebyshev pseudospectral method. Journal of Guidance Control and Dynamics, 25, 160–166 (2002)

    Article  Google Scholar 

  12. Gong, Q., Ross, I. M., and Fahroo, F. Costate computation by a Chebyshev pseudospectral method. Journal of Guidance Control and Dynamics, 33, 623–628 (2010)

    Article  Google Scholar 

  13. Darby, C. L., Hager, W. W., and Rao, A. V. An hp-adaptive pseudospectral method for solving optimal control problems. Optimal Control Applications and Methods, 32, 476–502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Darby, C. L., Hager, W. W., and Rao, A. V. Direct trajectory optimization using a variable low-order adaptive pseudospectral method. Journal of Spacecraft and Rockets, 48, 433–445 (2011)

    Article  Google Scholar 

  15. Tang, X. J., Wei, J. L., and Chen, K. A Chebyshev-Gauss pseudospectral method for solving optimal control problems. Acta Automatica Sinica, 41, 1778–1787 (2015)

    Article  MATH  Google Scholar 

  16. Shang, Y. D. and Guo, B. L. Analysis of Chebyshev pseudospectral method for multi-dimensional generalized SRLW equations. Applied Mathematics and Mechanics (English Edition), 24, 1168–1183 (2003) DOI 10.1007/BF02438106

    Article  MathSciNet  MATH  Google Scholar 

  17. Afify, A. A. and Elgazery, N. S. Effect of double dispersion on non-Darcy mixed convective flow over vertical surface embedded in porous medium. Applied Mathematics and Mechanics (English Edition), 34, 1247–1262 (2013) DOI 10.1007/s10483-013-1742-6

    Article  MathSciNet  Google Scholar 

  18. Zhuang, Y. F. and Huang, H. B. Time-optimal trajectory planning for underactuated spacecraft using a hybrid particle swarm optimization algorithm. Acta Astronautica, 94, 690–698 (2014)

    Article  Google Scholar 

  19. Huang, X., Yan, Y., Zhou, Y., and Zhang, H. Pseudospectral method for optimal propellantless rendezvous using geomagnetic Lorentz force. Applied Mathematics and Mechanics (English Edition), 36, 609–618 (2015) DOI 10.1007/s10483-015-1936-7

    Article  MathSciNet  Google Scholar 

  20. Broutman, D. A practical guide to pseudospectral methods. Journal of Fluid Mechanics, 360, 375–378 (1998)

    Article  MathSciNet  Google Scholar 

  21. Fernandes, C., Gurvits, L., and Li, Z. X. Attitude control of a space platform/manipulator system using internal motion. International Journal of Robotics Research, 13, 289–304 (1994)

    Article  Google Scholar 

  22. Shabana, A. A. Dynamics of Multibody Systems, 4th ed., Cambridge University Press, Cambridge, 58–59 (2013)

    Book  MATH  Google Scholar 

  23. Isidori, A. Nonlinear Control Systems II, Springer-Verlag, Berlin, 1–74 (1999)

    MATH  Google Scholar 

  24. Weideman, J. and Trefethen, L. The kink phenomenon in FejWr and Clenshaw-Curtis quadrature. Numerische Mathematik, 107, 707–727 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Berrut, J. P. and Trefethen, L. N. Barycentric Lagrange interpolation. SIAM Review, 46, 501–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Costa, B. and Don, W. S. On the computation of high order pseudospectral derivatives. Applied Numerical Mathematics, 33, 151–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trefethen, L. N. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review, 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Waldvogel, J. Fast construction of the FejWr and Clenshaw-Curtis quadrature rules. BIT Numerical Mathematics, 46, 195–202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Ge.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11472058)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, X., Yi, Z. & Chen, L. Optimal control of attitude for coupled-rigid-body spacecraft via Chebyshev-Gauss pseudospectral method. Appl. Math. Mech.-Engl. Ed. 38, 1257–1272 (2017). https://doi.org/10.1007/s10483-017-2236-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2236-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation