Skip to main content

Advertisement

Log in

A protein complex bearing an oxidase with napthalene dihydrodiol dehydrogenase activity is induced in Mucor circinelloides strain YR-1 during growth on polycyclic aromatic compounds

  • Short Communication
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Fungi are organisms capable of growing in a myriad of conditions and respond to counteract environmental cues. Several locations in the world are polluted with oil and its derivatives, and some microorganisms tolerant to these compounds have been isolated. Some fungi can grow in the presence of molecules such as polycyclic aromatic hydrocarbons as sole carbon sources. In this report, we further characterized the induced enzymes with phenanthrene from Mucor circinelloides YR-1 strain, isolated from a polluted field near a petrochemical facility in México. We identified a putative oxidase that is induced when growth with phenanthrene as sole carbon source at a pH of 8.5 and is NADP+ dependent. We show that this enzyme bears naphthalene dihydrodiol dehydrogenase activity with substrate preference for the cis-naphthalene over the trans-naphthalene, with an optimal pH in the range of 8–10. Mass spectrometry analysis revealed that the induced enzyme belongs to the NADP+ oxidase family enzymes with the typical Rossmann-fold for NADP+ binding. This enzyme seems to form a high molecular weight structure (~ 541 kDa) and with a monomer of 57 kDa, suggesting that the multimer is constituted of 10 subunits. Our findings contribute to understanding of the roles that dihydrodiol dehydrogenases have in organisms exposed to toxic compounds in the environment and can regulate their expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alvarado-Caudillo Y, Torres JC, Novoa VZ, Jiménez HS, Torres-Guzmán JC, Gutiérrez-Corona JF, Zazueta-Sandoval R (2002) Presence and physiologic regulation of alcohol oxidase activity in an indigenous fungus isolated from petroleum-contaminated soils. Appl Biochem Biotechnol 98–100:243–255

    Article  PubMed  Google Scholar 

  • Arun A, Raja PP, Arthi R, Ananthi M, Kumar KS, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151(2–3):132–142. doi:10.1007/s12010-008-8160-0

    Article  CAS  PubMed  Google Scholar 

  • Baleva M, Gowher A, Kamenski P, Tarassov I, Entelis N, Masquida BA (2015) Moonlighting human protein is involved in mitochondrial import of tRNA. Int J Mol Sci 16(5):9354–9367. doi:10.3390/ijms16059354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista-García RA, Kumar VV, Ariste A, Tovar-Herrera OE, Savary O, Peidro-Guzmán H, González-Abradelo D, Jackson SA, Dobson ADW, Sánchez-Carbente MDR, Folch-Mallol JL, Leduc R, Cabana HJ (2017) Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. Environ Manag 198(Pt 2):1–11

    Google Scholar 

  • Bergmeyer HU (1983) Alkoholdehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 11, 3rd edn. Verlag Chemie, Weinheim, p 139

    Google Scholar 

  • Cajthaml T, Moder M, Kacer P, Sasek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J. Chromatogr A 974(1–2):213–222

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Morales RL, Castellanos AD, Zazueta-Sandoval R (2010) Analysis of glycerol dehydrogenase activities present in Mucor circinelloides YR-1. Antonie Van Leeuwenhoek 98(4):437–445. doi:10.1007/s10482-010-9457-x

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Morales RL, Zazueta-Novoa V, Casillas JL, Ballesteros EA, Bote JA, Zazueta-Sandoval R (2014) Purification and characteristics of an inducible by polycyclic aromatic hydrocarbons NADP(+)-dependent naphthalenediol dehydrogenase (NDD) in Mucor circinelloides YR-1. Protein Expr Purif 97:1–8. doi:10.1016/j.pep.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  • Capdevila JH, Wei S, Helvig C, Falck JR, Belosludtsev Y, Truan G, Graham-Lorence SE, Peterson JA (1996) The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J Biol Chem. 271(37):22663–22671

    Article  CAS  PubMed  Google Scholar 

  • Carbone V, Endo S, Sumii R, Chung RP, Matsunaga T, Hara A, El-Kabbani O (2008a) Structures of dimeric dihydrodiol dehydrogenase apoenzyme and inhibitor complex: probing the subunit interface with site-directed mutagenesis. Proteins. 70(1):176–187

    Article  CAS  PubMed  Google Scholar 

  • Carbone V, Hara A, El-Kabbani O (2008b) Structural and functional features of dimeric dihydrodiol dehydrogenase. Cell Mol Life Sci 65(10):1464–1474. doi:10.1007/s00018-008-7508-5

    Article  CAS  PubMed  Google Scholar 

  • Doerner KC, White BA (1990) Detection of glycoproteins separated by nondenaturing polyacrylamide gel electrophoresis using the periodic acid-Schiff stain. Anal Biochem. 187(1):147–150

    Article  CAS  PubMed  Google Scholar 

  • Durón-Castellanos A, Zazueta-Novoa V, Silva-Jiménez H, Alvarado-Caudillo Y, Peña Cabrera E, Zazueta-Sandoval R (2005) Detection of NAD+-dependent alcohol dehydrogenase activities in YR-1 strain of Mucor circinelloides, a potential bioremediation of petroleum-contaminated soils. Appl Biochem Biotechnol 121–124:279–288

    Article  PubMed  Google Scholar 

  • Fayeulle A, Veignie E, Slomianny C, Dewailly E, Munch JC, Rafin C (2014) Energy-dependent uptake of benzo[a]pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani. Environ Sci Pollut Res Int 21(5):3515–3523. doi:10.1007/s11356-013-2324-3

    Article  CAS  PubMed  Google Scholar 

  • Furuno S, Foss S, Wild E, Jones KC, Semple KT, Harms H, Wick LY (2012) Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons. Environ Sci Technol. 46(10):5463–5470. doi:10.1021/es300810b

    Article  CAS  PubMed  Google Scholar 

  • Geertz-Hansen HM, Blom N, Feist AM, Brunak S, Petersen TN (2014) Cofactory: sequence-based prediction of cofactor specificity of Rossmann folds. Proteins 82(9):1819–1828. doi:10.1002/prot.24536

    Article  CAS  PubMed  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 31(7):1369. doi:10.3389/fmicb.2016.01369

    Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 169(1–3):1–15. doi:10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  • Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New York

    Google Scholar 

  • Joo WA, Speicher DW (2007) Protein detection in gels without fixation. Curr Protoc Protein Sci. doi:10.1002/0471140864.ps1006s48

    PubMed  Google Scholar 

  • Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci (China). 51:52–74. doi:10.1016/j.jes.2016.08.023

    Article  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction, and analysis. Nat Protoc 10(6):845–858. doi:10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuśmierz M, Oleszczuk P, Kraska P, Pałys E, Andruszczak S (2016) Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 146:272–279. doi:10.1016/j.chemosphere.2015.12.010

    Article  PubMed  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881. doi:10.1021/es0206184

    Article  CAS  PubMed  Google Scholar 

  • Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13(2):148–153

    Article  CAS  PubMed  Google Scholar 

  • Lemieux CL, Long AS, Lambert IB, Lundstedt S, Tysklind M, White PA (2015) Cancer risk assessment of polycyclic aromatic hydrocarbon contaminated soils determined using bioassay-derived levels of benzo [a] pyrene equivalents. Environ Sci Technol 49(3):1797–1805. doi:10.1021/es504466b

    Article  CAS  PubMed  Google Scholar 

  • Li S, Teng X, Su L, Mao G, Xu Y, Li T, Liu R, Zhang Q, Wang Y, Bartlam M (2017) Structure and characterization of a NAD(P)H-dependent carbonyl reductase from Pseudomonas aeruginosa PAO1. FEBS Lett. doi:10.1002/1873-3468.12683

    Google Scholar 

  • Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Moghimi H, Heidary Tabar R, Hamedi J (2017) Assessing the biodegradation of polycyclic aromatic hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World J Microbiol Biotechnol 33(7):136. doi:10.1007/s11274-017-2304-8

    Article  PubMed  Google Scholar 

  • Obi CC, Adebusoye SA, Amund OO, Ugoji EO, Ilori MO, Hedman CJ, Hickey WJ (2017) Structural dynamics of microbial communities in polycyclic aromatic hydrocarbon-contaminated tropical estuarine sediments undergoing simulated aerobic biotreatment. Appl Microbiol Biotechnol 101(10):4299–4314. doi:10.1007/s00253-017-8151-6

    Article  CAS  PubMed  Google Scholar 

  • Patel TR, Gibson DT (1974) Purification and properties of (plus)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J Bacteriol 119(3):879–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penning TM, Burczynski ME, Hung CF, McCoull KD, Palackal NT, Tsuruda LS (1999) Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Mouveaux T, Light SH, Minasov G, Anderson WF, Tomavo S, Ngô HM (2015) The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions. Acta Crystallogr D Biol Crystallogr 71(Pt 3):417–426. doi:10.1107/S1399004714026479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar N, Souza MC, Biasioli AG, Silva LB, Barbosa AS (2017) The multifaceted roles of Leptospira enolase. Res Microbiol 168(2):157–164. doi:10.1016/j.resmic.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, KeumYS Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309. doi:10.3390/ijerph6010278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Du J, Yue L, Zhan X (2016) Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene. Environ Sci Pollut Res Int 23(11):10863–10871. doi:10.1007/s11356-016-6307-z

    Article  CAS  PubMed  Google Scholar 

  • Sideri A, Goyal A, Di Nardo G, Tsotsou GE, Gilardi G (2013) Hydroxylation of non-substituted polycyclic aromatic hydrocarbons by cytochrome P450 BM3 engineered by directed evolution. J Inorg Biochem 120:1–7. doi:10.1016/j.jinorgbio.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  • Silva-Jiménez H, Zazueta-Sandoval R (2005) Intracellular fate of hydrocarbons: possible existence of specific compartments for their biodegradation. Appl Biochem Biotechnol 121–124:205–217

    Article  PubMed  Google Scholar 

  • Silva-Jiménez H, Zazueta-Novoa V, Durón-Castellanos A, Rodríguez-Robelo C, Leal-Morales CA, Zazueta-Sandoval R (2009) Intracellular distribution of fatty alcohol oxidase activity in Mucor circinelloides YR-1 isolated from petroleum contaminated soils. Antonie Van Leeuwenhoek 96(4):527–535. doi:10.1007/s10482-009-9368-x

    Article  PubMed  Google Scholar 

  • Tyagi RK, Babu BR, Datta K (1993) Simultaneous determination of native and subunit molecular weights of proteins by pore limit electrophoresis and restricted use of sodium dodecyl sulfate. Electrophoresis 14(8):826–828

    Article  CAS  PubMed  Google Scholar 

  • Verdin A, Lounès-Hadj Sahraoui A, Newsam R, Robinson G, Durand R (2005) Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ Pollut 133(2):283–291

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, Chen H, Zhang H, Chen W (2014) The roles of moonlighting proteins in bacteria. Curr Issues Mol Biol 16:15–22

    PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful for the support by CONACyT/CIBIOGEM Grant Number 264456. A grant from DAIP/Guanajuato University in the Convocatoria Institucional de Investigación Científica 2016–2017. Apoyo institucional para fortalecer la excelencia académica convenio 89/2016. Ángeles Rangel Serrano and Tannia Razo Soria for their skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Franco.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Roberto Zazueta Sandoval—Retired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copado, J.A.Á., Sandoval, R.Z., Castellanos, A.D. et al. A protein complex bearing an oxidase with napthalene dihydrodiol dehydrogenase activity is induced in Mucor circinelloides strain YR-1 during growth on polycyclic aromatic compounds. Antonie van Leeuwenhoek 111, 297–309 (2018). https://doi.org/10.1007/s10482-017-0950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0950-3

Keywords

Navigation