Skip to main content
Log in

Dissecting the role of NtrC and RpoN in the expression of assimilatory nitrate and nitrite reductases in Bradyrhizobium diazoefficiens

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ54, was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Bjgb:

Bradyrhizobium japonicum haemoglobin

BN3:

Bergersen minimal medium-nitrate

C:

Carbon

CFU:

Colony formation units

Flp:

Flavoprotein

MU:

Miller units

MV-NiR:

Methyl viologen-dependent nitrite reductase

MV-NR:

Methyl viologen-dependent nitrate reductase

N:

Nitrogen

NarK:

Nitrate/nitrite transporter

NasC:

Assimilatory nitrate reductase

NirA:

Assimilatory nitrite reductase

NO:

Nitric oxide

NtrB:

Two-component system kinase

NtrC:

Two-component system response regulator

OD500 :

Optical density-500 nm

PSY:

Peptone–salts–yeast extract

RpoN:

Alternative sigma factor

WT:

Wild-type

YEM:

Yeast-extract-mannitol

References

  • Bergersen FJ (1977) A treatise on dinitrogen fixation. In: Hardy RW, Silver W (eds) Biology: section III. Wiley, New York, pp 519–556

    Google Scholar 

  • Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546. doi:10.1099/mic.0.27303-0

    Article  CAS  PubMed  Google Scholar 

  • Cabrera JJ, Sanchez C, Gates AJ, Bedmar EJ, Mesa S, Richardson DJ, Delgado MJ (2011) The nitric oxide response in plant-associated endosymbiotic bacteria. Biochem Soc Trans 39:1880–1885. doi:10.1042/BST20110732

    Article  CAS  PubMed  Google Scholar 

  • Cabrera JJ, Salas A, Torres MJ, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ (2016) An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum. Biochem J 473:297–309. doi:10.1042/bj20150880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Reitzer LJ (1995) Active contribution of two domains to cooperative DNA binding of the enhancer-binding protein nitrogen regulator I (NtrC) of Escherichia coli: stimulation by phosphorylation and the binding of ATP. J Bacteriol 177:2490–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado MJ, Bonnard N, Tresierra-Ayala A, Bedmar EJ, Muller P (2003) The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. Microbiology 149:3395–3403

    Article  CAS  PubMed  Google Scholar 

  • Drepper T, Wiethaus J, Giaourakis D, Groß S, Schubert B, Vogt M, Wiencek Y, McEwan AG, Masepohl B (2006) Cross-talk towards the response regulator NtrC controlling nitrogen metabolism in Rhodobacter capsulatus. FEMS Microbiol Lett 258:250–256. doi:10.1111/j.1574-6968.2006.00228.x

    Article  CAS  PubMed  Google Scholar 

  • Evans CGT, Herbert D, Tempest DW (1970) The continuous cultivation of microorganisms. 2. Construction of a chemostat. Methods Microbiol 2:275–327

    Google Scholar 

  • Forchhammer K (2008) PII signal transducers: novel functional and structural insights. Trends Microbiol 16:65–72. doi:10.1016/j.tim.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  • Franck WL, Qiu J, Lee H, Chang W, Stacey G (2015) DNA microarray-based identification of genes regulated by NtrC in Bradyrhizobium japonicum. Appl Environ Microbiol 81:5299–5308. doi:10.1128/aem.00609-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gates AJ, Luque-Almagro VM, Goddard AD, Ferguson SJ, Roldán MD, Richardson DJ (2011) A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by Paracoccus denitrificans. Biochem J 435:743–753. doi:10.1042/bj20101920

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez JC, Ramos F, Ortner L, Tortolero M (1995) nasST, two genes involved in the induction of the assimilatory nitrite—nitrate reductase operon (nasAB) of Azotobacter vinelandii. Mol Microbiol 18:579–591. doi:10.1111/j.1365-2958.1995.mmi_18030579.x

    Article  PubMed  Google Scholar 

  • Ishida ML, Assumpção MC, Machado HB, Benelli EM, Souza EM, Pedrosa FO (2002) Identification and characterization of the two-component NtrY/NtrX regulatory system in Azospirillum brasilense. Braz J Med Biol Res 35:651–661

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Ninfa AJ (1999) Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein. J Bacteriol 181:1906–1911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Ninfa AJ (2009) α-Ketoglutarate controls the ability of the Escherichia coli PII signal transduction protein to regulate the activities of NRII (NtrB) but does not control the binding of PII to NRII. Biochemistry 48:11514–11521. doi:10.1021/bi901158h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299. doi:10.1016/S0168-1656(03)00148-2

    Article  CAS  PubMed  Google Scholar 

  • Kullik I, Fritsche S, Knobel H, Sanjuan J, Hennecke H, Fischer HM (1991) Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). J Bacteriol 173:1125–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh JA, Dodsworth JA (2007) Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377. doi:10.1146/annurev.micro.61.080706.093409

    Article  CAS  PubMed  Google Scholar 

  • Li W, Lu C (2007) Regulation of carbon and nitrogen utilization by CbrAB and NtrBC Two-component systems in Pseudomonas aeruginosa. J Bacteriol 189:5413–5420. doi:10.1128/jb.00432-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JT, Stewart V (1998) Nitrate assimilation by bacteria. Adv Microb Physiol 39(1–30):379

    Google Scholar 

  • Luque-Almagro VM, Gates AJ, Moreno-Vivián C, Ferguson SJ, Richardson DJ, Roldán MD (2011) Bacterial nitrate assimilation: gene distribution and regulation. Biochem Soc Trans 39:1838–1843. doi:10.1042/bst20110688

    Article  CAS  PubMed  Google Scholar 

  • Luque-Almagro VM, Lyall VJ, Ferguson SJ, Roldan MD, Richardson DJ, Gates AJ (2013) Nitrogen oxyanion-dependent dissociation of a two-component complex that regulates bacterial nitrate assimilation. J Biol Chem 288:29692–29702. doi:10.1074/jbc.M113.459032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GB, Chapman KA, Chelm BK (1988) Role of the Bradyrhizobium japonicum ntrC gene product in differential regulation of the glutamine synthetase II gene (glnII). J Bacteriol 170:5452–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrick MJ (1993) In a class of its own—the RNA polymerase sigma factor σ54N). Mol Microbiol 10:903–909. doi:10.1111/j.1365-2958.1993.tb00961.x

    Article  CAS  PubMed  Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Mongiardini EJ, Parisi GD, Quelas JI, Lodeiro AR (2016) The tight-adhesion proteins TadGEF of Bradyrhizobium diazoefficiens USDA 110 are involved in cell adhesion and infectivity on soybean roots. Microbiol Res 182:80–88

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    PubMed  PubMed Central  Google Scholar 

  • Nicholas DJD, Nason A (1957) Determination of nitrate and nitrite. Methods Enzymol 3:981–984

    Article  Google Scholar 

  • Ninfa AJ, Reitzer LJ, Magasanik B (1987) Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers. Cell 50:1039–1046. doi:10.1016/0092-8674(87)90170-X

    Article  CAS  PubMed  Google Scholar 

  • North AK, Klose KE, Stedman KM, Kustu S (1993) Prokaryotic enhancer-binding proteins reflect eukaryote-like modularity: the puzzle of nitrogen regulatory protein C. J Bacteriol 175:4267–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa K, Akagawa E, Yamane K, Sun ZW, LaCelle M, Zuber P, Nakano MM (1995) The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol 177:1409–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi Y, Shi W, Takatani N, Aichi M, Maeda S, Watanabe S, Yoshikawa H, Omata T (2011) Regulation of nitrate assimilation in cyanobacteria. J Exp Bot 62:1411–1424. doi:10.1093/jxb/erq427

    Article  CAS  PubMed  Google Scholar 

  • Patriarca EJ, Tatè R, Iaccarino M (2002) Key Role of Bacterial NH4 + metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 66:203–222. doi:10.1128/mmbr.66.2.203-222.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlowski K, Klosse U, de Bruijn FJ (1991) Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. Mol Gen Genet MGG 231:124–138. doi:10.1007/bf00293830

    Article  CAS  PubMed  Google Scholar 

  • Pino C, Olmo-Mira F, Cabello P, Martínez-Luque M, Castillo F, Roldán MD, Moreno-Vivián C (2006) The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1. Biochem Soc Trans 34:127–129. doi:10.1042/bst0340127

    Article  CAS  PubMed  Google Scholar 

  • Pioszak AA, Jiang P, Ninfa AJ (2000) The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter module. Biochemistry 39:13450–13461. doi:10.1021/bi000795m

    Article  CAS  PubMed  Google Scholar 

  • Regensburger B, Hennecke H (1983) RNA polymerase from Rhizobium japonicum. Arch Microbiol 135:103–109

    Article  CAS  PubMed  Google Scholar 

  • Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–176. doi:10.1146/annurev.micro.57.030502.090820

    Article  CAS  PubMed  Google Scholar 

  • Reitzer LJ, Magasanik B (1985) Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci USA 82:1979–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JD, Berks CB, Russell AD, Spiro S, Taylor JC (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci CMLS 58:165–178. doi:10.1007/pl00000845

    Article  CAS  PubMed  Google Scholar 

  • Romeo A, Sonnleitner E, Sorger-Domenigg T, Nakano MM, Eisenhaber B, Bläsi U (2012) Transcriptional regulation of nitrate assimilation in Pseudomonas aeruginosa occurs via transcriptional antitermination within the nirBD–PA1779–cobA operon. Microbiology 158:1543–1552. doi:10.1099/mic.0.053850-0

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sánchez C, Cabrera JJ, Gates AJ, Bedmar EJ, Richardson DJ, Delgado MJ (2011) Nitric oxide detoxification in the rhizobia-legume symbiosis. Biochem Soc Trans 39:184–188. doi:10.1042/BST0390184

    Article  PubMed  Google Scholar 

  • Schumacher J, Behrends V, Pan Z, Brown DR, Heydenreich F, Lewis MR, Bennett MH, Razzaghi B, Komorowski M, Barahona M, Stumpf MPH, Wigneshweraraj S, Bundy JG, Buck M (2013) Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo. MBio. doi:10.1128/mBio.00881-13

    PubMed  PubMed Central  Google Scholar 

  • Shimizu K (2016) Metabolic regulation and coordination of the metabolism in bacteria in response to a variety of growth conditions. In: Ye Q, Bao J, Zhong J (eds) Bioreactor engineering research and industrial applications I: cell factories., Advances in biochemical engineering biotechnologySpringer, Berlin, pp 1–54

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) Vector plasmids for in vivo and in vitro manipulation of Gram-negative bacteria. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Heidelberg, pp 98–106

    Chapter  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215. doi:10.1146/annurev.biochem.69.1.183

    Article  CAS  PubMed  Google Scholar 

  • Szeto WW, Nixon BT, Ronson CW, Ausubel FM (1987) Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J Bacteriol 169:1423–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Heeswijk WC, Westerhoff HV, Boogerd FC (2013) Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 77:628–695. doi:10.1128/mmbr.00025-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM (1974) Root-nodule symbioses with Rhizobium. In: Quispel A (ed) The biology of nitrogen fixation. American Elsevier Publishing Co., New York, pp 265–341

    Google Scholar 

  • Wang B, Pierson LS, Rensing C, Gunatilaka MK, Kennedy CK (2012) NasT-mediated antitermination plays an essential role in the regulation of the assimilatory nitrate reductase operon in Azotobacter vinelandii. Appl Environ Microbiol 78:6558–6567. doi:10.1128/aem.01720-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss V, Claverie-Martin F, Magasanik B (1992) Phosphorylation of nitrogen regulator I of Escherichia coli induces strong cooperative binding to DNA essential for activation of transcription. Proc Natl Acad Sci USA 89:5088–5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SQ, Chai W, Lin JT, Stewart V (1999) General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J Bacteriol 181:7274–7284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97:14674–14679. doi:10.1073/pnas.97.26.14674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hans-Martin Fisher (ETH Zürich, Institute of Microbiology, Zürich, Switzerland) for kindly providing the B. japonicum rpoN 1/2 mutant. We are also grateful to Paula Giménez, Silvana Tongiani, Abel Bortolameotti (members of CPA CONICET at IBBM), Ruben Bustos from UNLP, and Alba Hidalgo-García for their excellent technical assistance (EEZ CSIC). Dr. Donald F. Haggerty edited the final version of the manuscript. This work was supported by the Agencia Nacional de Promoción de la Investigación Científica y Tecnológica (ANPCyT) project PICT 2013-2864, Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET and Secyt-UNLP, Argentina. MJD received financial support from the European Regional Development Fund (ERDF) cofinanced Grants AGL2013-45087-R from the Ministerio de Economía y Competitividad (Spain) and PE2012-AGR1968 from the Junta de Andalucía. Continuous support from Junta de Andalucía to group BIO275 is also acknowledged. MFL was supported by fellowships from CONICET and by a short-stay fellowship from EMBO. SLLG is researcher at CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María J. Delgado or Silvina L. López-García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, M.F., Cabrera, J.J., Salas, A. et al. Dissecting the role of NtrC and RpoN in the expression of assimilatory nitrate and nitrite reductases in Bradyrhizobium diazoefficiens . Antonie van Leeuwenhoek 110, 531–542 (2017). https://doi.org/10.1007/s10482-016-0821-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0821-3

Keywords

Navigation