Skip to main content
Log in

rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The 16S rRNA gene has been used in the last decades as a gold standard for determining the phylogenetic position of bacteria and their taxonomy. It is a well conserved gene, with some variations, present in all bacteria and allows the reconstruction of genealogies of microorganisms. Nevertheless, this gene has its limitations when inferring phylogenetic relationships between closely related isolates. To overcome this problem, DNA–DNA hybridization appeared as a solution to clarify interspecies relationships when the sequence similarity of the 16S rRNA gene is above 97 %. However, this technique is time consuming, expensive and laborious and so, researchers developed other molecular markers such as sequencing of housekeeping or functional genes for accurate determination of bacterial phylogeny. One of these genes that have been used successfully, particularly in clinical microbiology, codes for the beta subunit of the RNA polymerase (rpoB). The rpoB gene is sufficiently conserved to be used as a molecular clock, it is present in all bacteria and it is a mono-copy gene. In this study, rpoB gene sequencing was applied to the phylum Planctomycetes. Based on the genomes of 19 planctomycetes it was possible to determine the correlation between the rpoB gene sequence and the phylogenetic position of the organisms at a 95–96 % sequence similarity threshold for a novel species. A 1200-bp fragment of the rpoB gene was amplified from several new planctomycetal isolates and their intra and inter-species relationships to other members of this group were determined based on a 96.3 % species border and 98.2 % for intraspecies resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adékambi T, Colson P, Drancourt M (2003) rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41(12):5699–5708

    Article  PubMed  Google Scholar 

  • Adékambi T, Berger P, Raoult D, Drancourt M (2006a) rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 56(1):133–143

    Article  PubMed  Google Scholar 

  • Adékambi T, Drancourt M, Raoult D (2006b) The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17(1):37–45

    Article  Google Scholar 

  • Adékambi T, Shinnick TM, Raoult D, Drancourt M (2008) Complete rpoB gene sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 58:1807–1814

    Article  PubMed  Google Scholar 

  • Barion S, Franchi M, Gallori E, Giulio MD (2007) The first lines of divergence in the Bacteria domain were the hyperthermophilic organisms, the Thermotogales and the Aquificales, and not the mesophilic Planctomycetales. Biosystems 87:13–19

    Article  PubMed  CAS  Google Scholar 

  • Bomar D, Giovannoni S, Stackebrandt E (1988) A unique type of eubacterial 5S rRNA in members of the order Planctomycetales. J Mol Evol 27(2):121–125

    Article  PubMed  CAS  Google Scholar 

  • Butler MK, Fuerst JA (2004) Comparative analysis of ribonuclease P RNA of the planctomycetes. Int J Syst Evol Microbiol 54:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Cayrou C, Terra A, Drancourt M (2013) Genotyping of Rhodopirellula baltica organisms using multispacer sequence typing. Mar Ecol. doi:10.1111/maec.12015

    Google Scholar 

  • Ciccarelli FD, Doerks T, Mering Cv, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Colson P, Tamalet C, Raoult D (2006) SVARAP and aSVARAP: simple tools for quantitative analysis of nucleotide and amino acid variability and primer selection for clinical microbiology. BMC Microbiol 6:21

    Article  PubMed  Google Scholar 

  • Drancourt M, Raoult D (1999) Characterization of mutations in the rpoB gene in naturally rifampin-resistant Rickettsia species. Antimicrob Agents Chemother 43(10):2400–2403

    PubMed  CAS  Google Scholar 

  • Drancourt M, Raoult D (2002) rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40(4):1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Fox GE (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42(1):166–170

    Article  PubMed  CAS  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  PubMed  CAS  Google Scholar 

  • Khamis A, Raoult D, La Scola B (2004) rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 42(9):3925–3931

    Article  PubMed  CAS  Google Scholar 

  • Klenk HP, Goker M (2010) En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 33(4):175–182

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005a) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102(7):2567–2572

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005b) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187(18):6258–6264

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B 361(1475):1929–1940

    Article  Google Scholar 

  • Kupfer M, Kuhnert P, Korczak BM, Peduzzi R, Demarta A (2006) Genetic relationships of Aeromonas strains inferred from 16S rRNA, gyrB and rpoB gene sequences. Int J Syst Evol Microbiol 56(12):2743–2751

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Park K, Kim S, Yoo H (2001) Aplication of nucleotide sequence of RNA polymerase β-subunit gene (rpoB) to molecular differentiation of serovars of Salmonella enterica subsp. enterica. Vet Microbiol 82:121–129

    Article  PubMed  CAS  Google Scholar 

  • La Scola B, Bui LT, Baranton G, Khamis A, Raoult D (2006a) Partial rpoB gene sequencing for identification of Leptospira species. FEMS Microbiol Lett 263(2):142–147

    Article  PubMed  Google Scholar 

  • La Scola B, Gundi VA, Khamis A, Raoult D (2006b) Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 44(3):827–832

    Article  PubMed  Google Scholar 

  • Lage OM, Bondoso J (2011) Planctomycetes diversity associated with macroalgae. FEMS Microbiol Ecol 78(2):366–375

    Article  PubMed  CAS  Google Scholar 

  • Lage OM, Bondoso J, Viana F (2012) Isolation and characterization of Planctomycetes from the sediments of a fish farm wastewater treatment tank. Arch Microbiol 194(10):879–885

    Article  PubMed  CAS  Google Scholar 

  • Meier-Kolthoff JP, Goker M, Sproer C, Klenk HP (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  PubMed  CAS  Google Scholar 

  • Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26(5):1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Nasir A, Naeem A, Khan MJ, Nicora HDL, Caetano-Anollés G (2011) Annotation of protein domains reveals remarkable conservation in the functional make up of proteomes across superkingdoms. Genes 2(4):869–911

    Article  CAS  Google Scholar 

  • Pilhofer M, Rappl K, Eckl C, Bauer AP, Ludwig W, Schleifer KH, Petroni G (2008) Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J Bacteriol 190(9):3192–3202

    Article  PubMed  CAS  Google Scholar 

  • Renesto P, Lorvellec-Guillon K, Drancourt M, Raoult D (2000) rpoB gene analysis as a novel strategy for identification of spirochetes from the genera Borrelia, Treponema, and Leptospira. J Clin Microbiol 38(9):3526

    Google Scholar 

  • Renesto P, Gouvernet J, Drancourt M, Roux V, Raoult D (2001) Use of rpoB gene analysis for detection and identification of Bartonella species. J Clin Microbiol 39(2):430–437

    Article  PubMed  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106(45):19126–19131

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52(3):1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kampfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60(Pt 1):249–266

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17(3):241–249

    Article  PubMed  CAS  Google Scholar 

  • Ward NL (2010) Family I. Planctomycetaceae Schlesner and Stackebrandt 1987, 179VP (Effective publication:Schlesner and Stackebrandt 1986, 175) emend. Ward (this volume). In: Krieg NR, Ludwig W, Whitman WB et al. (eds) The bacteroidetes, spirochaetes, tenericutes (mollicutes), acidobacteria, fibrobacteres, fusobacteria, dictyoglomi, gemmatimonadetes, lentisphaerae, verrucomicrobia, chlamydiae, and planctomycetes, vol 4. 2nd edn. Springer New York, pp 879–925

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad-Hoc-Committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37(4):463–464

    Article  Google Scholar 

  • Winkelmann N, Harder J (2009) An improved isolation method for attached-living Planctomycetes of the genus Rhodopirellula. J Microbiol Methods 77(3):276–284

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann N, Jaekel U, Meyer C, Serrano W, Rachel R, Rosselló-Móra R, Harder J (2010) Determination of the diversity of Rhodopirellula isolates from European seas by multilocus sequence analysis. Appl Environ Microbiol 76(3):776–785

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74(11):5088–5090

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação para a Ciência e Tecnologia (FCT, PEst-C/MAR/LA0015/2011). The first author was financed by FCT (PhD Grant SFRH/BD/35933/2007) and a Marie Curie Early Stage Training Site MarMic EST MEST-CT-2004-007776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Bondoso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondoso, J., Harder, J. & Lage, O.M. rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales . Antonie van Leeuwenhoek 104, 477–488 (2013). https://doi.org/10.1007/s10482-013-9980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9980-7

Keywords

Navigation