Skip to main content
Log in

Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Compared with culture-independent approaches, traditionally used culture-dependent methods have a limited capacity to characterize water microbiota. Nevertheless, for almost a century the latter have been optimized to detect and quantify relevant bacteria. A pertinent question is if culture-independent diversity surveys give merely an extended perspective of the bacterial diversity or if, even with a higher coverage, focus on a different set of organisms. We compared the diversity and phylogeny of bacteria in a freshwater sample recovered by currently used culture-dependent and culture-independent methods (DGGE and 454 pyrosequencing). The culture-dependent diversity survey presented lower coverage than the other methods. However, it allowed bacterial identifications to the species level, in contrast with the other procedures that rarely produced identifications below the order. Although the predominant bacterial phyla detected by both approaches were the same (Proteobacteria, Actinobacteria, Bacteroidetes), sequence similarity analysis showed that, in general, different operational taxonomical units were targeted by each method. The observation that culture-dependent and independent approaches target different organisms has implications for the use of the latter for studies in which taxonomic identification has a predictive value. In comparison to DGGE, 454 pyrosequencing method had a higher capacity to explore the bacterial richness and to detect cultured organisms, being also less laborious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadian A, Ehn M, Hober S (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363:83–94

    Article  PubMed  CAS  Google Scholar 

  • Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    Article  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    PubMed  CAS  Google Scholar 

  • Amann RI, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridization. Curr Opin Biotechnol 12:231–236

    Article  PubMed  CAS  Google Scholar 

  • Barreiros L, Fernandes A, Silva Ferreira AC, Pereira H, Bastos MMSM, Manaia CM, Nunes OC (2008) New insights into a bacterial metabolic and detoxifying association responsible for the mineralization of the thiocarbamate herbicide molinate. Microbiology 154:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Barreiros L, Manaia CM, Nunes OC (2011) Bacterial diversity and bioaugmentation in floodwater of a paddy field in the presence of the herbicide molinate. Biodegradation 22(2):445–461

    Article  PubMed  CAS  Google Scholar 

  • Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73(3):485–494

    Article  PubMed  CAS  Google Scholar 

  • Brunk C, Jones K, James T (1979) Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem 9:497–500

    Article  Google Scholar 

  • Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19:544–549

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Cottrell M, Waidner LA, Yu L, Kirchman DL (2005) Bacterial diversity of metagenomic and PCR libraries from the Delaware river. Environ Microbiol 7(12):1883–1895

    Article  PubMed  CAS  Google Scholar 

  • de Figueiredo DR, Pereira MJ, Moura A, Silva L, Bárrios S, Fonseca F, Henriques I, Correia A (2007) Bacterial community composition over a dry winter in meso- and eutrophic Portuguese water bodies. FEMS Microbiol Ecol 59:638–650

    Article  PubMed  Google Scholar 

  • Dewettinck T, Hulsbosch W, van Hege K, Top EM, Verstraete W (2001) Molecular fingerprinting of bacterial populations in groundwater and bottled mineral water. Appl Microbiol Biotechnol 57:412–418

    Article  PubMed  CAS  Google Scholar 

  • Eaton AD, Cresceri LS, Rice EW, Greenberg AB (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • European Council (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption as amended by regulation 1882/2003/EC. Council of the European Union, Brussels

  • Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 (List of prokaryotic names with standing in nomenclature. Last full update March 09, 2011. http://www.bacterio.net)

  • Faria C, Vaz-Moreira I, Serapicos E, Nunes OC, Manaia CM (2009) Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water. Sci Total Environ 407:3876–3882

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogenetic inference package), version 3, 6th edn. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM (2007) Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60:166–176

    Article  PubMed  CAS  Google Scholar 

  • Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4(11):634–643

    Article  PubMed  CAS  Google Scholar 

  • Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J (2005) Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microbiol 71:5908–5919

    Article  PubMed  CAS  Google Scholar 

  • Haack SK, Fogarty LR, West TG, Alm EW, McGuire JT, Long DT, Hyndman DW, Forney LJ (2004) Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environ Microbiol 6(5):438–448

    Article  PubMed  CAS  Google Scholar 

  • Hiorns WD, Methé BA, Nierzwicki-Bauer SA, Zehr JP (1997) Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63(7):2957–2960

    PubMed  CAS  Google Scholar 

  • Hoefel D, Monis PT, Grooby WL, Andrews S, Saint CP (2005) Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system. Appl Environ Microbiol 71:6479–6488

    Article  PubMed  CAS  Google Scholar 

  • Hong P-Y, Hwang C, Ling F, Andersen GL, LeChevalier MW, Liu W-T (2010) Pyrosequencing analysis of bacterial biofilm communities in water meters of a drinking water distribution system. Appl Environ Microbiol 76(16):5631–5635

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3(2):0003.1–0003.8 (reviews)

    Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  • ISO 9308-1:2000, Water quality—detection and enumeration of E. coli and coliform bacteria. Part 1: membrane filtration method. International Organisation for Standardisation, Geneva, Switzerland

  • Jordan JA, Jones-Laughner J, Durso MB (2009) Utility of pyrosequencing in identifying bacteria directly from positive blood culture bottles. J Clin Microbiol 47(2):368–372

    Article  PubMed  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kawai M, Matsutera E, Kanda H, Yamaguchi N, Tani K, Nasu M (2002) 16S ribossomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 68:699–704

    Article  PubMed  CAS  Google Scholar 

  • Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177

    Article  PubMed  CAS  Google Scholar 

  • Kisand V, Wikner J (2003) Combining culture-dependent and–independent methodologies for estimation of richness of estuarine bacterioplankton consuming riverine dissolved organic matter. Appl Environ Microbiol 69(6):3607–3616

    Article  PubMed  CAS  Google Scholar 

  • Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36(7):2230–2239

    Article  PubMed  CAS  Google Scholar 

  • Kubista M, Akerman B, Nordén B (1987) Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry 26:4545–4553

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Leclerc H (1994) Les eaux minerales naturelles: flore bactérienne native, nature et signification. Eaux Minérales 94:49–60

    Google Scholar 

  • Leclerc H, Moreau A (2002) Microbiological safety of natural mineral water. FEMS Microbiol Rev 26(2):207–222

    Article  PubMed  CAS  Google Scholar 

  • Lindström ES, Agterveld MPK-V, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. App Environ Microbiol 71:8201–8206

    Article  Google Scholar 

  • Lopes AR, Faria C, Prieto-Fernández A, Trasar-Cepeda C, Manaia CM, Nunes OC (2011) Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biol Biochem 43(1):115–125

    Article  CAS  Google Scholar 

  • Loy A, Beisker W, Meier H (2005) Diversity of bacteria growing in mineral water after bottling. Appl Environ Microbiol 71(7):3624–3632

    Article  PubMed  CAS  Google Scholar 

  • Manuel CM, Nunes OC, Melo LF (2007) Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res 41(3):551–562

    Article  PubMed  CAS  Google Scholar 

  • Mossel DAA, Struijk CB (2004) Assessment of the microbial integrity, sensu G.S. Wilson, of piped and bottled drinking water in the condition as ingested. Int J Food Microbiol 92:375–390

    Article  PubMed  Google Scholar 

  • Murray AE, Hollibaught JT, Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rRNA fragments. Appl Environ Microbiol 62:2676–2680

    PubMed  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Palleroni NJ (1997) Prokaryotic diversity and the importance of culturing. Antonie van Leeuwenhoek 72(3):3–19

    Article  PubMed  CAS  Google Scholar 

  • Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55(5):856–866

    Article  PubMed  CAS  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Revetta RP, Pemberton A, Lamendella R, Iker B, Santo Domingo JW (2010) Identification of bacterial populations in drinking water using 16S rRNA-based sequence analyses. Water Res 44:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Roh SW, Abell GCJ, Kim K-H, Nam Y-D, Bae J-W (2010) Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol 28(6):291–299

    Article  PubMed  CAS  Google Scholar 

  • Ronaghi M, Elahi E (2002) Pyrosequencing for microbial typing. J Chromatogr B Analyt Technol Biomed Life Sci 782:67–72

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H (2001) A single band does not always represent a single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol Lett 23:1205–1208

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:1–7

    PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Wang S-B, Li Q, Liang W-J, Jiang Y, Jiang S-W (2008) PCR-DGGE analysis of nematode diversity in Cu-contaminated soil. Pedosphere 18(5):621–627

    Article  CAS  Google Scholar 

  • Warnecke F, Hugenholtz P (2007) Building on basic metagenomics with complementary technologies. Genome Biol 8(12):231.1–231.5

    Article  Google Scholar 

  • Wu Q, Zhao X-H, Zhao S-Y (2006) Application of PCR-DGGE in research of bacterial diversity in drinking water. Biomed Environ Sci 19:371–374

    PubMed  CAS  Google Scholar 

  • Zwart G, Crump BC, van Agterveld MP, Hagen F, Han S-K (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the workers from the water treatment plant for their kind collaboration on sample collection and for providing the physicochemical characterization of the water. This study was financed by Fundação para a Ciência e a Tecnologia (project PTDC/AMB/70825/2006 and IVM grant SFRH/BD/27978/2006).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia M. Manaia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaz-Moreira, I., Egas, C., Nunes, O.C. et al. Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie van Leeuwenhoek 100, 245–257 (2011). https://doi.org/10.1007/s10482-011-9583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9583-0

Keywords

Navigation