Skip to main content
Log in

Recent contributions to linear semi-infinite optimization: an update

  • SI: 4OR Surveys
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper reviews the state-of-the-art in the theory of deterministic and uncertain linear semi-infinite optimization, presents some numerical approaches to this type of problems, and describes a selection of recent applications in a variety of fields. Extensions to related optimization areas, as convex semi-infinite optimization, linear infinite optimization, and multi-objective linear semi-infinite optimization, are also commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agmon, S. (1954). The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6, 382–392.

    Google Scholar 

  • Ahmed, F., Dür, M., & Still, G. (2013). Copositive programming via semi-infinite optimization. Journal of Optimization Theory and Applications, 159, 322–340.

    Google Scholar 

  • Aliprantis, C., & Border, K. (2005). Infinite dimensional analysis: A Hitchhiker’s guide (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Altinel, I. K., Çekyay, B. Ç., Feyzioğlu, O., Keskin, M. E., & Özekici, S. (2011). Mission-based component testing for series systems. Annals of Operations Research, 186, 1–22.

    Google Scholar 

  • Altinel, I. K., Çekyay, B. Ç., Feyzioğlu, O., Keskin, M. E., & Özekici, S. (2013). The design of mission-based component test plans for series connection of subsystems. IIE Transactions, 45, 1202–1220.

    Google Scholar 

  • Anderson, E. J., Goberna, M. A., & López, M. A. (2001). Simplex-like trajectories on quasi-polyhedral convex sets. Mathematics of Operations Research, 26, 147–162.

    Google Scholar 

  • Anderson, E. J., & Lewis, A. S. (1989). An extension of the simplex algorithm for semi-infinite linear programming. Mathematical Programming, 44A, 247–269.

    Google Scholar 

  • Anderson, E. J., & Nash, P. (1987). Linear programming in infinite-dimensional spaces: Theory and applications. Chichester: Wiley.

    Google Scholar 

  • Astaf’ev, N. N., Ivanov, A. V., & Trofimov, S. P. (2016). The set of target vectors of a semi-infinite linear programming problem with a duality gap. (Russian) Tr. Inst. Mat. Mekh., 22, 43–52.

    Google Scholar 

  • Audy, J.-F., D’Amours, S., & Rönnqvist, M. (2012). An empirical study on coalition formation and cost/savings allocation. International Journal of Production Economics, 136, 13–27.

    Google Scholar 

  • Auslender, A., Ferrer, A., Goberna, M. A., & López, M. A. (2015). Comparative study of RPSALG algorithms for convex semi-infinite programming. Computational Optimization and Applications, 60, 59–87.

    Google Scholar 

  • Auslender, A., Goberna, M. A., & López, M. A. (2009). Penalty and smoothing methods for convex semi-infinite programming. Mathematics of Operations Research, 34, 303–319.

    Google Scholar 

  • Azé, D., & Corvellec, J.-N. (2004). Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM: Control Optimisation and Calculus of Variations, 10, 409–425.

    Google Scholar 

  • Badikov, S., Jacquier, A., Liu, D. Q., & Roome, P. (2017). No-arbitrage bounds for the forward smile given marginals. Quantitative Finance, 17, 1243–1256.

    Google Scholar 

  • Barragán, A., Hernández, L. A., & Todorov, M. I. (2016). New primal-dual partition of the space of linear semi-infinite continuous optimization problems. Comptes rendus de l’Academie bulgare des Sciences, 69, 1263–1274.

    Google Scholar 

  • Basu, A., Martin, K., & Ryan, C. T. (2014). On the sufficiency of finite support duals in semi-infinite linear programming. Operations Research Letters, 42, 16–20.

    Google Scholar 

  • Basu, A., Martin, K., & Ryan, C. T. (2015). A Unified approach to semi-infinite linear programs and duality in convex programming. Mathematics of Operations Research, 40, 146–170.

    Google Scholar 

  • Basu, A., Martin, K., & Ryan, C. T. (2017). Strong duality and sensitivity analysis in semi-infinite linear programming. Mathematical Programming, 161A, 451–485.

    Google Scholar 

  • Ben-Tal, A., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.

    Google Scholar 

  • Benavoli, A., & Piga, D. (2016). A probabilistic interpretation of set-membership filtering: Application to polynomial systems through polytopic bounding. Automatica, 70, 158–172.

    Google Scholar 

  • Betró, B. (2004). An accelerated central cutting plane algorithm for linear semi-infinite programming. Mathematical Programming, 101A, 479–495.

    Google Scholar 

  • Betró, B. (2007). Bayesian robustness: Theory and computation. In F. Ruggeri, R. S. Kenett, & F. Faltin (Eds.), Encyclopedia of statistics in quality and reliability (pp. 203–207). Chichester: Wiley.

    Google Scholar 

  • Betró, B. (2009). Numerical treatment of Bayesian robustness problems. International Journal of Approximate Reasoning, 50, 279–288.

    Google Scholar 

  • Bisbos, C. D., & Ampatzis, A. T. (2008). Shakedown analysis of spatial frames with parameterized load domain. Engineering Structures, 303, 119–3128.

    Google Scholar 

  • Blado, D., Hu, W., & Toriello, A. (2016). Semi-infinite relaxations for the dynamic knapsack problem with stochastic item sizes. SIAM Journal on Optimization, 26, 1625–1648.

    Google Scholar 

  • Bodirsky, M., Jonsson, P., & Oertzen, T. (2012). Essential convexity and complexity of semi-algebraic constraints. Logical Methods in Computer Science, 8, 4–25.

    Google Scholar 

  • Boţ, R. I., Csetnek, E. R., & Wanka, G. (2008). Sequential optimality conditions in convex programming via perturbation approach. Journal of Convex Analysis, 15, 149–164.

    Google Scholar 

  • Brosowski, B. (1982). Parametric semi-infinite optimization. Frankfurt am Main: Peter Lang.

    Google Scholar 

  • Brosowski, B. (1984). Parametric semi-infinite linear programming I. Continuity of the feasible set and the optimal value. Mathematical Programming Study, 21, 18–42.

    Google Scholar 

  • Cánovas, M. J., Dontchev, A. L., López, M. A., & Parra, J. (2009). Isolated calmness of solution mappings in convex semi-infinite optimization. Journal of Mathematical Analysis and Applications, 350, 892–837.

    Google Scholar 

  • Cánovas, M. J., Hall, J. A. J., López, M. A., & Parra, J. Calmness of partially perturbed linear systems with an application to the central path. Mathematical Methods of Operations Research (submitted).

  • Cánovas, M. J., Hantoute, A., Parra, J., & Toledo, F. J. (2014). Calmness of the argmin mapping in linear semi-infinite optimization. Journal of Optimization Theory and Applications, 160, 111–126.

    Google Scholar 

  • Cánovas, M. J., Hantoute, A., Parra, J., & Toledo, F. J. (2015). Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization. Optimization Letters, 9, 513–521.

    Google Scholar 

  • Cánovas, M. J., Hantoute, A., Parra, J., & Toledo, F. J. (2016). Calmness modulus of fully perturbed linear programs. Mathematical Programming, 158A, 267–290.

    Google Scholar 

  • Cánovas, M. J., Henrion, R., López, M. A., & Parra, J. (2016). Outer limit of subdifferentials and calmness moduli in linear and nonlinear programming. Journal of Optimization Theory and Applications, 169, 925–952.

    Google Scholar 

  • Cánovas, M. J., Henrion, R., López, M. A., Parra, J. (2018). Indexation strategies and calmness constants for uncertain linear inequality systems. In E. Gil et al. (Eds.), The Mathematics of the Uncertain. Studies in Systems, Decision and Control, 142, 831–843.

    Google Scholar 

  • Cánovas, M. J., Henrion, R., Parra, J., & Toledo, F. J. (2016). Critical objective size and calmness modulus in linear programming. Set-Valued and Variational Analysis, 24, 565–579.

    Google Scholar 

  • Cánovas, M. J., Kruger, A. Y., López, M. A., Parra, J., & Théra, M. A. (2014). Calmness modulus of linear semi-infinite programs. SIAM Journal on Optimization, 24, 29–48.

    Google Scholar 

  • Cánovas, M. J., López, M. A., Parra, J., & Toledo, F. J. (2005). Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Mathematical Programming, 103A, 95–126.

    Google Scholar 

  • Cánovas, M. J., López, M. A., Parra, J., & Toledo, F. J. (2006). Distance to solvability/unsolvability in linear optimization. SIAM Journal on Optimization, 16, 629–649.

    Google Scholar 

  • Cánovas, M. J., López, M. A., Parra, J., & Toledo, F. J. (2006). Ill-posedness with respect to the solvability in linear optimization. Linear Algebra and Its Applications, 416, 520–540.

    Google Scholar 

  • Cánovas, M. J., López, M. A., Parra, J., & Toledo, F. J. (2007). Error bounds for the inverse feasible set mapping in linear semi-infinite optimization via a sensitivity dual approach. Optimization, 56, 547–563.

    Google Scholar 

  • Cánovas, M. J., López, M. A., Parra, J., & Toledo, F. J. (2014). Calmness of the feasible set mapping for linear inequality systems. Set-Valued and Variational Analysis, 22, 375–389.

    Google Scholar 

  • Cánovas, M. J., Parra, J., & Toledo, F. J. Lipschitz modulus of fully perturbed linear programs. Pacific Journal of Optimization (to appear).

  • Cánovas, M. J., Parra, J., Rückmann, J., & Toledo, F. J. (2017). Point-based neighborhoods for sharp calmness constants in linear programming. Set-Valued and Variational Analysis, 25, 757–772.

    Google Scholar 

  • Chan, T. C. Y., & Mar, Ph A. (2017). Stability and Continuity in Robust Optimization. SIAM Journal on Optimization, 27, 817–841.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Kortanek, K. O. (1962). Duality, Haar programs, and finite sequence spaces. Proceedings of the National Academy of Sciences of the United States of America, 48, 783–786.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Kortanek, K. O. (1963). Duality in semi-infinite programs and some works of Haar and Carathéodory. Management Science, 9, 209–228.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Kortanek, K. O. (1965). On representations of semi-infinite programs which have no duality gaps. Management Science, 12, 113–121.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Kortanek, K. O. (1969). On the theory of semi-infinite programming and a generalization of the Kuhn–Tucker saddle point theorem for arbitrary convex functions. Naval Research Logistics Quarterly, 16, 41–51.

    Google Scholar 

  • Cho, H., Kim, K. K., & Lee, K. (2016). Computing lower bounds on basket option prices by discretizing semi-infinite linear programming. Optimization Letters, 10, 1629–1644.

    Google Scholar 

  • Chu, Y. C. (1966). Generalization of some fundamental theorems on linear inequalities. Acta Mathematica Sinica, 16, 25–40.

    Google Scholar 

  • Chuong, T. D., & Jeyakumar, V. (2017a). An exact formula for radius of robus feasibility of uncertain linear programs. Journal of Optimization Theory and Applications, 173, 203–226.

    Google Scholar 

  • Chuong, T. D., & Jeyakumar, V. (2017b). A generalized Farkas lemma with a numerical certificate and linear semi-infinite programs with SDP duals. Linear Algebra and Its Applications, 515, 38–52.

    Google Scholar 

  • Chuong, T. D., & Jeyakumar, V. Semi-infinite convex quadratic programming with geometric index sets: Exact second-order cone duals, preprint, School of Mathematics, University of New South Wales, Sydney.

  • Clarke, F. H. (1976). A new approach to Lagrange multipliers. Mathematics of Operations Research, 1, 165–174.

    Google Scholar 

  • Correa, R., Hantoute, A., & López, M. A. (2016). Weaker conditions for subdifferential calculus of convex functions. Journal of Functional Analysis, 271, 1177–1212.

    Google Scholar 

  • Cozad, A., Sahinidis, N. V., & Miller, D. C. (2015). A combined first-principles and data-driven approach to model building. Computers & Chemical Engineering, 73, 116–127.

    Google Scholar 

  • Cozman, F. G., & Polpo de Campos, C. (2014). Kuznetsov independence for interval-valued expectations and sets of probability distributions: Properties and algorithms. International Journal of Approximate Reasoning, 55, 666–682.

    Google Scholar 

  • Daniilidis, A., Goberna, M. A., López, M. A., & Lucchetti, R. (2015). Stability in linear optimization under perturbations of the left-hand side coefficients. Set-Valued and Variational Analysis, 23, 737–758.

    Google Scholar 

  • Dantzig, G. B. (1991). Linear programming. In J. K. Lenstra, et al. (Eds.), History of mathematical programming: A collection of personal reminiscences (pp. 19–31). Amsterdam: North-Holland.

    Google Scholar 

  • Daum, S., & Werner, R. (2011). A novel feasible discretization method for linear semi-infinite programming applied to basket options pricing. Optimization, 60, 1379–1398.

    Google Scholar 

  • Dinh, N., Goberna, M. A., López, M. A., & Song, T. Q. (2007). New Farkas-type constraint qualifications in convex infinite programming. ESAIM: Control. Optimisation and Calculus of Variations, 13, 580–597.

    Google Scholar 

  • Dinh, N., Goberna, M. A., López, M. A., & Volle, M. (2010). Convex inequalities without constraint qualification nor closedness condition, and their applications in optimization. Set-Valued and Variational Analysis, 18, 423–445.

    Google Scholar 

  • Dolgin, Y., & Zeheb, E. (2005). Model reduction of uncertain systems retaining the uncertainty structure. Systems & Control Letters, 54, 771–779.

    Google Scholar 

  • Dontchev, A. L., & Rockafellar, R. T. (2009). Implicit functions and solution mappings: A view from variational analysis. New York: Springer.

    Google Scholar 

  • Duffin, R., & Karlovitz, L. A. (1965). An infinite linear program with a duality gap. Management Science, 12, 122–134.

    Google Scholar 

  • Dür, M., Jargalsaikhan, B., & Still, G. (2016). Genericity results in linear conic programming—A tour d’horizon. Mathematics of Operations Research, 42, 77–94.

    Google Scholar 

  • Eberhard, A., Roshchina, V., & Sang, T. (2017). Outer limits of subdifferentials for min-max type functions. Optimization. https://doi.org/10.1080/02331934.2017.1398750.

  • Elbassioni, K., Makino, K., & Najy, W. (2017). A multiplicative weights update algorithm for packing and covering semi-infinite linear programs. Approximation and online algorithms. Lecture Notes in Computer Science, 10138, 78–91.

    Google Scholar 

  • Fabian, M., Henrion, R., Kruger, A. Y., & Outrata, J. (2010). Error bounds: Necessary and sufficient conditions. Set-Valued Analysis, 18, 121–149.

    Google Scholar 

  • Fajardo, M. D., & López, M. A. (1999). Locally Farkas-Minkowski systems in convex semi-infinite programming. Journal of Optimization Theory and Applications, 103, 313–335.

    Google Scholar 

  • Fajardo, M. D., & López, M. A. (2006). Some results about the facial geometry of convex semi-infinite systems. Optimization, 55, 661–684.

    Google Scholar 

  • Fajardo, M. D., López, M. A., & Puente, R. (2008). Linear representations and quasipolyhedrality of a finite-valued convex function. Optimization, 57, 215–237.

    Google Scholar 

  • Fang, D. H., Li, C., & Ng, K. F. (2009). Constraint qualifications for extended Farkas’s lemmas and Lagrangian dualities in convex infinite programming. SIAM Journal on Optimization, 20, 1311–1332.

    Google Scholar 

  • Fang, D. H., Li, C., & Ng, K. F. (2010). Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming. Nonlinear Analysis, 73, 1143–1159.

    Google Scholar 

  • Faybusovich, L., Mouktonglang, T., & Tsuchiya, T. (2008). Numerical experiments with universal barrier functions for cones of Chebyshev systems. Computational Optimization and Applications, 41, 205–223.

    Google Scholar 

  • Feng, S. (2015). The research on the multiple kernel learning-based face recognition in pattern matching. The Open Automation and Control Systems Journal, 7, 1796–1801.

    Google Scholar 

  • Ferrer, A., Goberna, M. A., González-Gutiérrez, E., & Todorov, M. I. (2017). A comparative study of relaxation algorithms for the linear semi-infinite feasibility problem. Annals of Operations Research, 258, 587–612.

    Google Scholar 

  • Feyzioglu, O., Altinel, I. K., & Ozekici, S. (2008). Optimum component test plans for phased-mission systems. European Journal of Operational Research, 185, 255–265.

    Google Scholar 

  • Fischer, T. (1983). Contributions to semi-infinite linear optimization. Meth Verf Math Phys, 27, 175–199.

    Google Scholar 

  • Gaitsgory, V., & Rossomakhine, S. (2015). Averaging and linear programming in some singularly perturbed problems of optimal control. Applied Mathematics and Optimization, 71, 195–276.

    Google Scholar 

  • Gao, S. Y., Sun, J., & Wu, S.-Y. (2016). A semi-infinite programming approach to two-stage stochastic linear programs with high-order moment constraints. Optimization Letters. https://doi.org/10.1007/s11590-016-1095-4.

    Google Scholar 

  • Gisbert, M. J., Cánovas, M. J., Parra, J., & Toledo, J. (2018). Calmness of the optimal value in linear programming. SIAM Journal on Optimization (to appear).

    Google Scholar 

  • Ghate, A., Sharma, D., & Smith, R. L. (2010). A shadow simplex method for infinite linear programs. Operations Research, 58, 865–877.

    Google Scholar 

  • Glashoff, K., & Gustafson, S. A. (1983). Linear optimization and approximation. Berlin: Springer.

    Google Scholar 

  • Goberna, M. A. (2005). Linear semi-infinite optimization: Recent advances. In A. Rubinov & V. Jeyakumar (Eds.), Continuous optimization: Current trends and modern applications (pp. 3–22). New York: Springer.

    Google Scholar 

  • Goberna, M. A. (2005). Linear semi-infinite programming: A guided tour. Lima: IMCA Monoghaphs.

    Google Scholar 

  • Goberna, M. A., Gómez, S., Guerra-Vázquez, F., & Todorov, M. I. (2007). Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients. European Journal of Operational Research, 181, 1069–1085.

    Google Scholar 

  • Goberna, M. A., González, E., Martinez-Legaz, J. E., & Todorov, M. I. (2010). Motzkin decomposition of closed convex sets. Journal of Mathematical Analysis and Applications, 364, 209–221.

    Google Scholar 

  • Goberna, M. A., Guerra-Vázquez, F., & Todorov, M. I. (2013). Constraint qualifications in linear vector semi-infinite optimization. European Journal of Operational Research, 227, 12–21.

    Google Scholar 

  • Goberna, M. A., Guerra-Vázquez, F., & Todorov, M. I. (2016). Constraint qualifications in convex vector semi-infinite optimization. European Journal of Operational Research, 249, 32–40.

    Google Scholar 

  • Goberna, M. A., Hiriart-Urruty, J. B., & López, M. A. (2018a). Best approximate solutions of inconsistent linear inequality systems. Vietnam Journal of Mathematics, 46, 271–284.

    Google Scholar 

  • Goberna, M. A., Iusem, A., Martínez-Legaz, J. E., & Todorov, M. I. (2013). Motzkin decomposition of closed convex sets via truncation. Journal of Mathematical Analysis and Applications, 400, 35–47.

    Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Linh, N. (2016). Radius of robust feasibility formulas for classes of convex programs with uncertain polynomial constrains. Operations Research Letters, 44, 67–73.

    Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & López, M. A. (2013). Robust linear semi-infinite programming duality under uncertainty. Mathematical Programming, 139B, 185–203.

    Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Pérez, J. (2014). Robust solutions of multi-objective linear semi-infinite programs under constraint data uncertainty. SIAM Journal on Optimization, 24, 1402–1419.

    Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Pérez, J. (2015). Robust solutions to multi-objective linear programs with uncertain data. European Journal of Operational Research, 242, 730–743.

    Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Pérez, J. (2018b). Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs. European Journal of Operational Research, 70, 40–50.

    Google Scholar 

  • Goberna, M. A., Lancho, A., Todorov, M. I., & Vera de Serio, V. N. (2011). On implicit active constraints in linear semi-infinite programs with unbounded coefficients. Applied Mathematics and Optimization, 63, 239–256.

    Google Scholar 

  • Goberna, M. A., & López, M. A. (1988). Optimal value function in semi-infinite programming. Journal of Optimization Theory and Applications, 59, 261–279.

    Google Scholar 

  • Goberna, M. A., & López, M. A. (1998a). Topological stability of linear semi-infinite inequality systems. Journal of Optimization Theory and Applications, 89, 227–236.

    Google Scholar 

  • Goberna, M. A., & López, M. A. (1998b). Linear semi-infinite optimization. Chichester: Wiley.

    Google Scholar 

  • Goberna, M. A., & López, M. A. (2014). Post-optimal analysis in linear semi-infinite optimization. Springer, New York: Springer Briefs.

    Google Scholar 

  • Goberna, M. A., & López, M. A. (2017). Recent contributions to linear semi-infinite optimization. 4OR, 15, 221–264.

  • Goberna, M. A., López, M. A., & Pastor, J. T. (1980). Farkas-Minkowski systems in semi-infinite programming. Applied Mathematics and Optimization, 7, 295–308.

    Google Scholar 

  • Goberna, M. A., López, M. A., & Todorov, M. I. (1996). Stability theory for linear inequality systems. SIAM Journal on Matrix Analysis and Applications, 17, 730–743.

    Google Scholar 

  • Goberna, M. A., López, M. A., & Todorov, M. I. (1997). Stability theory for linear inequality systems II: Upper semicontinuity of the solution set mapping. SIAM Journal on Optimization, 7, 1138–1151.

    Google Scholar 

  • Goberna, M. A., López, M. A., & Todorov, M. I. (2001). On the stability of the feasible set in linear optimization. Set-Valued Analysis, 9, 75–99.

    Google Scholar 

  • Goberna, M. A., López, M. A., & Todorov, M. I. (2003). Extended active constraints in linear optimization with applications. SIAM Journal on Optimization, 14, 608–619.

    Google Scholar 

  • Goberna, M. A., López, M. A., & Volle, M. (2014). Primal attainment in convex infinite optimization duality. Journal of Convex Analysis, 21, 1043–1064.

    Google Scholar 

  • Goberna, M. A., López, M. A., & Volle, M. (2017). Modified Lagrangian duality for the supremum of convex functions. Pacific Journal of Optimization, 13, 501–514.

    Google Scholar 

  • Goberna, M. A., & Kanzi, N. (2017). Optimality conditions in convex multi-objective SIP. Mathematical Programming, 164A, 167–191.

    Google Scholar 

  • Goberna, M. A., Ridolfi, A., & Vera de Serio, V. N. (2017). Stability of the duality gap in linear optimization. Set-Valued and Variational Analysis, 25, 617–636.

    Google Scholar 

  • Goberna, M. A., Terlaky, T., & Todorov, M. I. (2010). Sensitivity analysis in linear semi-infinite programming via partitions. Mathematics of Operations Research, 35, 14–25.

    Google Scholar 

  • Goberna, M. A., & Todorov, M. I. (2009). Primal-dual stability in continuous linear optimization. Mathematical Programming, 116B, 129–146.

    Google Scholar 

  • González-Gutiérrez, E., Rebollar, L. A., & Todorov, M. I. (2012). Relaxation methods for solving linear inequality systems: Converging results. Top, 20, 426–436.

    Google Scholar 

  • González-Gutiérrez, E., & Todorov, M. I. (2012). A relaxation method for solving systems with infinitely many linear inequalities. Optimization Letters, 6, 291–298.

    Google Scholar 

  • Gui, Z., Li, M., & Guo, P. (2017). Simulation-based inexact fuzzy semi-infinite programming method for agricultural cultivated area planning in the Shiyang River Basin. Journal of Irrigation and Drainage Engineering, 143(2), (online1943-47746).

    Google Scholar 

  • Guo, F. Semidefinite programming relaxations for linear semi-infinite polynomial programming. ArXiv:1509.06394v3, 14 Nov 2017.

  • Guo, F., & Sun, X. (2017). LP relaxations for a class of linear semi-infinite programming problems. Optimization, 66, 657–673.

    Google Scholar 

  • Guo, P., Huang, G. H., & He, L. (2008). ISMISIP: An inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty. Stochastic Environmental Research and Risk Assessment, 22, 759–775.

    Google Scholar 

  • Gustafson, S. A. (1970). On the computational solution of a class of generalized moment problems. SIAM Journal on Numerical Analysis, 7, 343–357.

    Google Scholar 

  • Gustafson, S. A., & Kortanek, K. O. (1973). Numerical treatment of a class of semi-infinite programming problems. Naval Research Logistics Quarterly, 20, 477–504.

    Google Scholar 

  • Haar, A. (1924). Über lineare ungleichungen (in German). Acta Scientiarum Mathematicarum, 2, 1–14.

    Google Scholar 

  • Hayashi, S., Okuno, T., & Ito, Y. (2016). Simplex-type algorithm for second-order cone programmes via semi-infinite programming reformulation. Optimization Methods and Software, 31, 1272–1297.

    Google Scholar 

  • He, L., & Huang, G. H. (2008). Optimization of regional waste management systems based on inexact semi-infinite programming. Canadian Journal of Civil Engineering, 35, 987–998.

    Google Scholar 

  • He, L., Huang, G. H., & Lu, H. (2011). Bivariate interval semi-infinite programming with an application to environmental decision-making analysis. European Journal of Operational Research, 211, 452–465.

    Google Scholar 

  • Henrion, R., & Roemisch, W. (2017). Optimal scenario generation and reduction in stochastic programming. Preprint (http://www.optimization-online.org/DB_HTML/2017/03/5919.html).

  • Hu, H. (1994). A projection method for solving infinite systems of linear inequalities. In D.-Z. Du & J. Sun (Eds.), Advances in optimization and approximation (pp. 186–194). Dordrecht: Kluwer.

    Google Scholar 

  • Huang, G. H., He, L., Zeng, G. M., & Lu, H. W. (2008). Identification of optimal urban solid waste flow schemes under impacts of energy prices. Environmental Engineering Science, 25, 685–695.

    Google Scholar 

  • Huynh, D. B. P., Rozza, G., Sen, S., & Patera, A. T. (2007). A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. Comptes Rendus de l’Académie des Sciences de Paris, 345, 473–478.

    Google Scholar 

  • Ioffe, A. D. (1979). Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions. SIAM Journal on Control and Optimization, 17, 245–250.

    Google Scholar 

  • Jeyakumar, V., Li, G. Y., & Lee, G. M. (2011). A robust von Neumann minimax theorem for zero-sum games under bounded payoff uncertainty. Operations Research Letters, 39, 109–114.

    Google Scholar 

  • Jeroslow, R. G. (1979). Some relaxation methods for linear inequalities. Cahiers du Cero, 21, 43–53.

    Google Scholar 

  • Ji, Y. (2017). A worst-case regret approach to multiperiod portfolio optimization. Technical Bulletin, 55, 398–406.

    Google Scholar 

  • Ji, Y., Wang, T., Goh, M., Zhou, Y., & Zou, B. (2014). The worst-case discounted regret portfolio optimization problem. Applied Mathematics and Computation, 239, 310–319.

    Google Scholar 

  • Jinglai, S. (2012). Positive invariance of constrained affine dynamics and its applications to hybrid systems and safety verification. IEEE Transactions on Automatic Control, 57, 3–18.

    Google Scholar 

  • Karimi, A., & Galdos, G. (2010). Fixed-order \(H_{\infty }\) controller design for nonparametric models by convex optimization. Automatica, 46, 1388–1394.

    Google Scholar 

  • Kashyap, H., Ahmed, H. A., Hoque, N., Roy, S., & Bhattacharyya, D. K. (2016). Big data analytics in bioinformatics: Architectures, techniques, tools and issues. Network Modeling Analysis in Health Informatics and Bioinformatics, 5, 28.

    Google Scholar 

  • Klabjan, D., & Adelman, D. (2007). An infinite-dimensional linear programming algorithm for deterministic semi-Markov decision processes on Borel spaces. Mathematics of Operations Research, 32, 528–550.

    Google Scholar 

  • Klatte, D., & Kummer, B. (2002). Nonsmooth equations in optimization: Regularity, calculus, methods and applications. Dordrecht: Kluwer.

    Google Scholar 

  • Klatte, D., & Kummer, B. (2009). Optimization methods and stability of inclusions in Banach spaces. Mathematical Programming, 117B, 305–330.

    Google Scholar 

  • Kortanek, K. O. (1974). Classifying convex extremum problems over linear topologies having separation properties. Journal of Mathematical Analysis and Applications, 46, 725–755.

    Google Scholar 

  • Kortanek, K. O. (2001). On the 1962–1972 decade of semi-infinite programming: A subjective view. In M. A. Goberna & M. A. López (Eds.), Semi-infinite programming: Recent advances (pp. 3–34). Dordrecht: Kluwer.

    Google Scholar 

  • Kortanek, K. O., & Zhang, Q. (2016). Extending the mixed algebraic-analysis Fourier–Motzkin elimination method for classifying linear semi-infinite programmes. Optimization, 65, 707–727.

    Google Scholar 

  • Kruger, A. Y., Van Ngai, H., & Théra, M. (2010). Stability of error bounds for convex constraint systems in Banach spaces. SIAM Journal on Optimization, 20, 3280–3296.

    Google Scholar 

  • Larriqueta, M., & Vera de Serio, V. N. (2014). On metric regularity and the boundary of the feasible set in linear optimization. Set-Valued and Variational Analysis, 22, 1–17.

    Google Scholar 

  • Lasserre, J. B. (2012). An algorithm for semi-infinite polynomial optimization. Top, 20, 119–129.

    Google Scholar 

  • Leibfritz, F., & Maruhn, J. H. (2009). A successive SDP-NSDP approach to a robust optimization problem in finance. Computational Optimization and Applications, 44, 443–466.

    Google Scholar 

  • Li, C., Ng, K. F., & Pong, T. K. (2008). Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM Journal on Optimization, 19, 163–187.

    Google Scholar 

  • Li, M. H., Meng, K. W., & Yang, X. Q. (2017). On error bound moduli for locally Lipschitz and regular functions. Mathematical Programming. https://doi.org/10.1007/s10107-017-1200-1.

    Google Scholar 

  • Li, X., Lu, H., He, L., & Shi, B. (2014). An inexact stochastic optimization model for agricultural irrigation management with a case study in China. Stochastic Environmental Research and Risk, 28A, 281–295.

    Google Scholar 

  • Li, X., Mao, W., & Jiang, W. (2016). Multiple-kernel-learning-based extreme learning machine for classification design. Neural Computing and Applications, 27, 175–184.

    Google Scholar 

  • Liu, Y. (2016). New constraint qualification and optimality for linear semi-infinite programing. Pac J Optim, 12, 223–232.

    Google Scholar 

  • Liu, Y. (2016). Generalized corner optimal solution for LSIP: Existence and numerical computation. TOP, 24, 19–43.

    Google Scholar 

  • Liu, Y., & Ding, M. F. (2014). A ladder method for semi-infinite programming. Journal of Industrial and Management Optimization, 10, 397–412.

    Google Scholar 

  • Liu, Y., & Goberna, M. A. (2016). Asymptotic optimality conditions for linear semi-infinite programming. Optimization, 65, 387–414.

    Google Scholar 

  • López, M. A. (2012). Stability in linear optimization and related topics. A personal tour. Top, 20, 217–244.

    Google Scholar 

  • López, M. A., & Still, G. (2007). Semi-infinite programming. European Journal of Operational Research, 180, 491–518.

    Google Scholar 

  • Lou, Y., Yin, Y., & Lawphongpanich, S. (2010). Robust congestion pricing under boundedly rational user equilibrium. Transportation Research Part B: Methodological, 44, 15–28.

    Google Scholar 

  • Luo, Z.-Q., Roos, C., & Terlaky, T. (1999). Complexity analysis of a logarithmic barrier decomposition method for semi-infinite linear programming. Applied Numerical Mathematics, 29, 379–394.

    Google Scholar 

  • Mangasarian, O. L. (2004). Knowledge-based linear programming. SIAM Journal on Optimization, 12, 375–382.

    Google Scholar 

  • Mangasarian, O. L., & Wild, E. W. (2007). Nonlinear knowledge in kernel approximation. IEEE Transactions on Neural Networks and Learning System, 18, 300–306.

    Google Scholar 

  • Mangasarian, O. L., & Wild, E. W. (2008). Nonlinear knowledge-based classification. IEEE Transactions on Neural Networks and Learning System, 19, 1826–1832.

    Google Scholar 

  • Martínez-Legaz, J. E., Todorov, M. I., & Zetina, C. (2014). \(\gamma \) -Active constraints in convex semi-infinite programming. Numerical Functional Analysis and Optimization, 35, 1078–1094.

    Google Scholar 

  • Maruhn, J. H. (2009). Robust static super-replication of barrier options. Berlin: De Gruyter.

    Google Scholar 

  • Mehrizi, S., Khosravi, S., & Ahmadian, M. (2017). An efficient procedure for bilayer-expurgated LDPC codes design in cooperative relay channels. IEEE Communications Letters, 21, 2114–2117.

    Google Scholar 

  • Mejia, C. (2015). Linear secret sharing and the automatic search of linear rank inequalities. Applied Mathematical Sciences, 9, 5305–5324.

    Google Scholar 

  • Miao, D. Y., Li, Y. P., Huang, G. H., & Yang, Z. F. (2014). Optimization model for planning regional water resource systems under ucertainty. Journal of Water Resources Planning and Management, 140, 238–249.

    Google Scholar 

  • Mordukhovich, B. S. (2006). Variational analysis and generalized differentiation, I: Basic theory. Berlin: Springer.

    Google Scholar 

  • Motzkin, T. S., & Schoenberg, I. J. (1954). The relaxation method for linear inequalities. Canadian Journal of Mathematics, 6, 393–404.

    Google Scholar 

  • Ochoa, P. D., & Vera de Serio, V. N. (2012). Stability of the primal-dual partition in linear semi-infinite programming. Optimization, 61, 1449–1465.

    Google Scholar 

  • Oskoorouchi, M. R., Ghaffari, H. R., Terlaky, T., & Aleman, D. M. (2011). An interior point constraint generation algorithm for semi-infinite optimization with health-care application. Operations Research, 59, 1184–1197.

    Google Scholar 

  • Ozogur, S., Ustunkar, G., & Weber, G.-W. (2016). Adapted infinite kernel learning by multi-local algorithm. International Journal of Pattern Recognition and Artificial Intelligence, 30, 1651004.

    Google Scholar 

  • Ozogur, S., & Weber, G.-W. (2010). On numerical optimization theory of infinite kernel learning. Journal of Global Optimization, 48, 215–239.

    Google Scholar 

  • Ozogur, S., & Weber, G.-W. (2010). Infinite kernel learning via infinite and semi-infinite programming. Optimization Methods and Software, 25, 937–970.

    Google Scholar 

  • Papp, D. (2017). Semi-infinite programming using high-degree polynomial interpolants and semidefinite programming. SIAM Journal on Optimization., 27, 1858–1879.

    Google Scholar 

  • Patera, A. T., & Yano, M. (2017). An LP empirical quadrature procedure for parametrized functions. Comptes Rendus Mathematique, 355, 1161–1167.

    Google Scholar 

  • Peña, J., Vera, J. C., & Zuluaga, L. F. (2010). Static-arbitrage lower bounds on the prices of basket options via linear programming. Quantitative Finance, 10, 819–827.

    Google Scholar 

  • Powell, M. J. D. (1990). Karmarkar’s algorithm: A view from nonlinear programming. Bulletin Institute of Mathematics and its Applications, 26, 165–181.

    Google Scholar 

  • Prékopa, A. (2009). Inequalities for discrete higher order convex functions. Journal of Mathematical Inequalities, 3, 485–498.

    Google Scholar 

  • Prékopa, A., Ninh, A., & Alexe, G. (2016). On the relationship between the discrete and continuous bounding moment problems and their numerical solutions. Annals of Operations Research, 238, 521–575.

    Google Scholar 

  • Priyadarsini, P. I., Devarakonda, N., & Babu, I. R. (2013). A chock-full survey on support vector machines. International Journal of Advanced Research in Computer Science and Software Engineering, 3, 780–799.

    Google Scholar 

  • Puente, R., & Vera de Serio, V. N. (1999). Locally Farkas-Minkowski linear semi-infinite systems. Top, 7, 103–121.

    Google Scholar 

  • Remez, E. (1934). Sur la détermination des polynômes d’approximation de degré donné (in French). Commun Soc Math Kharkoff and Inst Sci Math et Mecan, 10, 41–63.

    Google Scholar 

  • Robinson, S. M. (1981). Some continuity properties of polyhedral multifunctions. Mathematical programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979). Mathematical Programming Studies, 14, 206–214.

    Google Scholar 

  • Rockafellar, R. T., & Wets, R. J. B. (1998). Variational analysis. Berlin: Springer.

    Google Scholar 

  • Rozza, G., Huynh, D. B. P., & Patera, A. T. (2008). Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Archives of Computational Methods in Engineering, 15, 229–275.

    Google Scholar 

  • Rubinstein, G. S. (1981). A comment on Voigt’s paper a duality theorem for linear semi-infinite programming (in Russian). Optimization, 12, 31–32.

    Google Scholar 

  • Rudolph, H. (2015). Some applications of the semi-infinite simplex algorithm. Optimization, 64, 1739–1757.

    Google Scholar 

  • Shani, B., & Solan, E. (2014). Strong approachability. Journal of Dynamics & Games, 71, 507–535.

    Google Scholar 

  • Singh, C., Sarkar, S., Aram, A., & Kumar, A. (2012). Cooperative profit sharing in coalition-based resource allocation in wireless networks. IEEE/ACM Transactions on Networking, 20B, 69–83.

    Google Scholar 

  • Sommer, B., Dingersen, T., Gamroth, C., Schneider, S. E., Rubert, S., Krüger, J., et al. (2009). CELLmicrocosmos 2.2 MembraneEditor: A modular interactive shape-based software approach to solve heterogenous membrane packing problems. Journal of Chemical Information and Modeling, 5, 1165–1182.

    Google Scholar 

  • Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large scale multiple kernel learning. Journal of Machine Learning Research, 7, 1531–1565.

    Google Scholar 

  • Stein, O. (2012). How to solve a semi-infinite optimization problem. European Journal of Operational Research, 223, 312–320.

    Google Scholar 

  • Suakkaphong, N., & Dror, M. (2011). Managing decentralized inventory and transshipment. Top, 19, 480–506.

    Google Scholar 

  • Summerfield, N. S., & Dror, M. (2012). Stochastic pogramming for decentralized newsvendor with transshipment. International Journal of Production Economics, 137, 292–303.

    Google Scholar 

  • Tan, M., Tsang, I. W., & Wang, L. (2014). Towards ultrahigh dimensional feature selection for big data. Journal of Machine Learning Research, 15, 1371–1429.

    Google Scholar 

  • Thibault, L. (1997). Sequential convex subdifferential calculus and sequential Lagrange multipliers. SIAM Journal on Control and Optimization, 35, 1434–1444.

    Google Scholar 

  • Tian, Y. (2013). Strategy-proof and efficient ofline interval scheduling and cake. In Y. Chen & N. Immorlica (Eds.), Web and internet economics (pp. 436–437). New York: Springer.

    Google Scholar 

  • Tian, Y., Shi, Y., & Liu, X. (2012). Recent advances on support vector machines research. Technological and Economic Development of Economy, 18, 5–33.

    Google Scholar 

  • Todd, M. J. (1994). Interior-point algorithms for semi-infinite programming. Math Programing, 65A, 217–245.

    Google Scholar 

  • Todorov, M. I. (1985/86). Generic existence and uniqueness of the solution set to linear semi-infinite optimization problems. Numerical Functional Analysis and Optimization, 8, 27–39.

  • Tong, X., Wu, S.-Y., & Zhou, R. (2010). New approach for the nonlinear programming with transient stability constraints arising from power systems. Computational Optimization and Applications, 45, 495–520.

    Google Scholar 

  • Tong, X., Ling, Ch., & Qi, L. (2008). A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints. Journal of Computational and Applied Mathematics, 217, 432–447.

    Google Scholar 

  • Toriello, A., & Uhan, N. A. (2017). Dynamic linear programming games with risk-averse players. Mathematical Programming, 163A, 25–56.

    Google Scholar 

  • Trofimov, S., Ivanov, A., & Fettser, Y. (2017). An infinitesimal approach for analysis of convex optimization problem with duality gap. CEUR Workshop Proceedings, 1987, 570–577.

    Google Scholar 

  • Tunçel, L., & Todd, M. J. (1996). Asymptotic behavior of interior-point methods: A view from semi-infinite programming. Mathematics of Operations Research, 21, 354–381.

    Google Scholar 

  • Uhan, N. A. (2015). Stochastic linear programming games with concave preferences. European Journal of Operational Research, 243, 637–646.

    Google Scholar 

  • Vanderbei, R. J. (1995). Affine-scaling trajectories associated with a semi-infinite linear program. Mathematics of Operations Research, 20, 163–174.

    Google Scholar 

  • Vaz, A., Fernandes, E., & Gomes, M. (2003). A sequential quadratic programming with a dual parametrization approach to nonlinear semiinfinite programming. Top, 11, 109–130.

    Google Scholar 

  • Vaz, A., Fernandes, E., & Gomes, M. (2004). SIPAMPL: Semi-infinite programming with AMPL. ACM Transactions on Mathematical Software, 30, 47–61.

    Google Scholar 

  • Vercher, E. (2008). Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming. Journal of Computational and Applied Mathematics, 217, 381–393.

    Google Scholar 

  • Vinh, N. T., Kim, D. S., Tam, N. N., & Yen, N. D. (2016). Duality gap function in infinite dimensional linear programming. Journal of Mathematical Analysis and Applications, 437, 1–15.

    Google Scholar 

  • Wang, Y., & Ni, H. (2012). Multivariate convex support vector regression with semi-definite programming. Knowledge-Based Systems, 30, 87–94.

    Google Scholar 

  • Wu, S.-Y., Li, D. H., Qi, L. Q., & Zhou, G. L. (2005). An iterative method for solving KKT system of the semi-infinite programming. Optimization Methods and Software, 20, 629–643.

    Google Scholar 

  • Xu, Y., Sun, W., & Qi, L. Q. (2015). On solving a class of linear semi-infinite programming by SDP method. Optimization, 64, 603–616.

    Google Scholar 

  • Yamangil, E., Altinel, I. K., Çekyay, B., Feyzioğlu, O., & Özekici, S. (2011). Design of optimum component test plans in the demonstration of diverse system performance measures. IIE Transactions, 43, 535–546.

    Google Scholar 

  • Yiu, K. F. C., Gao, M. J., Shiu, T. J., Wu, S. Y., Tran, T., & Claesson, I. (2013). A fast algorithm for the optimal design of high accuracy windows in signal processing. Optimization Methods and Software, 28, 900–916.

    Google Scholar 

  • Yu, G., & Yang, Y. (2017). Dynamic routing with real-time traffic information. Operational Research. https://doi.org/10.1007/s12351-017-0314-9.

  • Zălinescu, C. (2002). Convex analysis in general vector spaces. Singapore: World Scientific.

    Google Scholar 

  • Zhang, L., Wu, S.-Y., & López, M. A. (2010). A new exchange method for convex semi-infinite programming. SIAM Journal on Optimization, 20, 2959–2977.

    Google Scholar 

  • Zhang, Q. (2017). Strong duality and dual pricing properties in semi-infinite linear programming: A non-Fourier–Motzkin elimination approach. Journal of Optimization Theory and Applications, 175, 702–17.

    Google Scholar 

  • Zheng, X. Y., & Ng, K. F. (2003). Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM Journal on Optimization, 14, 757–772.

    Google Scholar 

  • Zhu, Y., Huang, G. H., Li, Y. P., He, L., & Zhang, X. X. (2011). An interval full-infinite mixed-integer programming method for planning municipal energy systems: A case study of Beijing. Applied Energy, 88, 2846–2862.

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the Editors-in-Chief of 4OR and AOR for their kind invitation to participate in the 5th volume of Surveys in Operations Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Goberna.

Additional information

This is an updated version of the paper “Recent contributions to linear semi-infinite optimization” that appeared in 4OR, 15(3), 221–264 (2017). It was supported by the MINECO of Spain and ERDF of EU, Grant MTM2014-59179-C2-1-P, and by the Australian Research Council, Project DP160100854.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goberna, M.A., López, M.A. Recent contributions to linear semi-infinite optimization: an update. Ann Oper Res 271, 237–278 (2018). https://doi.org/10.1007/s10479-018-2987-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2987-8

Keywords

Navigation