Skip to main content
Log in

The Shapley value in the Knaster gain game

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In Briata et al. (AUCO Czech Econ Rev 6:199–208, 2012), the authors introduce a cooperative game with transferable utility for allocating the gain of a collusion among completely risk-averse agents involved in the fair division procedure introduced by Knaster (Ann Soc Pol Math 19:228–230, 1946). In this paper we analyze the Shapley value (Shapley, in: Kuhn, Tucker (eds) Contributions to the theory of games II (Annals of Mathematics Studies 28), Princeton University Press, Princeton, 1953) of the game and propose its use as a measure of the players’ attitude towards collusion. Furthermore, we relate the sign of the Shapley value with the ranking order of the players’ evaluation, and show that some players in a given ranking will always deter collusion. Finally, we characterize the coalitions that maximize the gain from collusion, and suggest an ad-hoc coalition formation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Two players \(i,j \in N\) are called symmetric if \(v(S\cup \{i\}) = v(S\cup \{j\})\), \(S \subseteq N\setminus \{i,j\}\).

References

  • Brams, S. J., & Taylor, A. D. (1996). Fair-division: From cake cutting to dispute resolution. New York: Cambridge University Press.

    Book  Google Scholar 

  • Brams, S. J., & Taylor, A. D. (1999). The WinWin solution: guaranteeing fair shares to everybody. New York: W. W. Norton.

    Google Scholar 

  • Branzei, R., Fragnelli, V., Meca, A., & Tijs, S. (2009). On cooperative games related to market situations and auctions. International Game Theory Review, 11, 459–470.

    Article  Google Scholar 

  • Briata, F., Dall’Aglio, M., & Fragnelli, V. (2012). Dynamic collusion and collusion games in Knaster’s procedure. AUCO Czech Economic Review, 6, 199–208.

    Google Scholar 

  • Fragnelli, V., & Marina, M. E. (2009). Strategic manipulations and collusions in Knaster procedure. AUCO Czech Economic Review, 3, 143–153.

    Google Scholar 

  • Fragnelli, V., & Meca, A. (2010). A note on the computation of the Shapley value for von Neumann–Morgenstern market games. International Game Theory Review, 12, 287–291.

    Article  Google Scholar 

  • Gambarelli, G., Iaquinta, G., & Piazza, M. (2012). Anti-collusion indices and averages for the evaluation of performances and judges. Journal of Sports Sciences, 30, 411–417.

    Article  Google Scholar 

  • Graham, D., & Marshall, R. (1987). Collusive bidder behavior at a single object second-price and English auctions. Journal of Political Economy, 95, 1217–1239.

    Article  Google Scholar 

  • Hart, S. (1989). Shapley value. In J. Eatwell, M. Milgate, & P. Newman (Eds.), The New Palgrave: Game theory (pp. 210–216). Basingstoke: Macmillan Press.

    Chapter  Google Scholar 

  • Knaster, B. (1946). Sur le Problème du Partage Pragmatique de H Steinhaus. Annales de la Societé Polonaise de Mathematique, 19, 228–230.

    Google Scholar 

  • Kuhn, H. (1967). On games of fair division. In M. Shubik (Ed.), Essays in Mathematical Economics in Honor of Oskar Morgenstern (pp. 29–37). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Mead, W. (1967). Natural resource disposal policy—Oral auction versus sealed bids. Natural Resources Journal, 7, 194–224.

    Google Scholar 

  • Milgrom, P. R. (1987). Auction theory. In T. Bewley (Ed.), Advances in economic theory: Fifth world congress 1985 (pp. 1–32). London: Cambridge University Press.

    Google Scholar 

  • Moulin, H. (1993). On the fair and coalitions-strateyproof allocation of private goods. In K. G. Binmore & A. P. Kirman (Eds.), Frontiers of game theory (pp. 151–163). Cambridge: MIT Press.

    Google Scholar 

  • Shapley, L. S. (1953). A value for \(n\)-person games. In H. W. Kuhn & A. W. Tucker (Eds.), Contributions to the theory of games II (Annals of Mathematics Studies 28) (pp. 307–317). Princeton: Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stefano Moretti for suggesting Eq. (25) in the “Appendix”, and two anonimous referees for their constructive advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Dall’Aglio.

Additional information

This work is dedicated to the memory of Mario Dall’Aglio, researcher and educator.

A Appendix: Proof of Theorem 3.1

A Appendix: Proof of Theorem 3.1

Finding an explicit expression for the Shapley value is hampered by the fact that the marginal contribution of an agent to a coalition has a complicated espression. In fact, if \(i \in N\) and \(S \subseteq N \setminus \{i\}\), the following holds

$$\begin{aligned} v_g(S \cup \{i\})-v_g(S) = \frac{n-s-1}{n^2} \; \max \left\{ s(v_i - b^S),b^S - v_i \right\} - \frac{1}{n^2} \sum _{k \in S}(b^S-v_k). \end{aligned}$$
(24)

We will consider, instead, a general formula about the difference of Shapley values for adjacent players

$$\begin{aligned} \phi _j(v_g) - \phi _{j+1}(v_g) = \sum _{S \subseteq N \setminus \{ j,j+1 \}} \frac{s!(n-s-2)!}{(n-1)!} \left[ v_g(S \cup \{j\}) - v_g(S \cup \{j+1\}) \right] . \end{aligned}$$
(25)

The following lemma shows that the difference between the value of the coalition joined by two successive players results in a formula much simpler than (24). For any \(j \in N \setminus \{n\}\), let \(J= \{1,\ldots ,j\}\) and \(J^c= \{j+1,\ldots ,n\}\).

Lemma A.1

For any \(j \in N \setminus \{n\}\) and \(S \subseteq N \setminus \{j,j+1\}\),

$$\begin{aligned} v_g(S \cup \{j\}) - v_g(S \cup \{j+1\})= {\left\{ \begin{array}{ll} \frac{(n-s-1)s}{n^2}(v_j-v_{j+1}) &{} \hbox {if}\quad S \cap J = \varnothing \\ -\frac{n-s-1}{n^2}(v_j-v_{j+1}) &{} \hbox {if}\quad S \cap J \ne \varnothing \end{array}\right. }. \end{aligned}$$
(26)

Proof

If \(S \cap J = \varnothing \), then \(S \subseteq J^c \setminus \{j+1\}\), and

$$\begin{aligned} v_g(S \cup \{j\}) - v_g(S \cup \{j+1\})= & {} \frac{n-s-1}{n^2} \left( \sum _{i \in S \cup \{j\}} \left( b_{S \cup \{j\}} - v_i \right) - \sum _{i \in S \cup \{j+1\}} \left( b_{S \cup \{j+1\}} - v_i \right) \right) \\= & {} \frac{n-s-1}{n^2} \left( \sum _{i \in S } \left( v_j - v_i \right) - \sum _{i \in S } \left( v_{j+1} - v_i \right) \right) \\= & {} \frac{n-s-1}{n^2} s (v_j - v_{j+1}). \end{aligned}$$

Otherwise, \(S \cap J \ne \varnothing \), and

$$\begin{aligned} v_g(S \cup \{j\}) - v_g(S \cup \{j+1\})= & {} \frac{n-s-1}{n^2} \left( \sum _{i \in S \cup \{j\}} \left( b_S - v_i \right) - \sum _{i \in S \cup \{j+1\}} \left( b_S - v_i \right) \right) \\= & {} - \frac{n-s-1}{n^2} (v_j - v_{j+1}). \end{aligned}$$

\(\square \)

Proof of Theorem 3.1

Each coalition worth in the gain game can be written as

$$\begin{aligned} v_g(S) = \frac{n-s}{n^2}\sum _{i \in S} ( b_S - v_i ) = \sum _{j=1}^{n-1} c_{S,j} \left( v_j - v_{j+1} \right) , \end{aligned}$$
(27)

where

$$\begin{aligned} c_{S,j}= \frac{n-s}{n^2} \sum _{i \in S} I_{S,i}(j), \quad I_{S,i}(j)= {\left\{ \begin{array}{ll} 1 &{} \hbox {if}\quad \min \nolimits _{h \in S} h \le j < i\\ 0 &{} \hbox {otherwise} \end{array}\right. }, \end{aligned}$$

and the coefficients \(c_{S,j}\) do not depend on the actual values of the \(v_i\)’s (within a fixed ranking). The Shapley value for a player is a linear combination of differences of coalitions’ worths, and, therefore, a linear combination of the differences in valuations between successive agents, explaining (2).

The gain game is such that \(v_g(N)=0\) and, therefore,

$$\begin{aligned} 0 = v_g(N) = \sum _{i =1}^n \phi _i(v_g) = \sum _{i = 1}^n \sum _{j =1}^{n-1} \psi _{ij}(v_{j} - v_{j+1}) = \sum _{j=1}^{n-1} ( v_{j} - v_{j+1}) \sum _{i =1}^n \psi _{ij}. \end{aligned}$$

Since this holds for any choice of the \(v_i\), \(i \in N\), it must be that

$$\begin{aligned} \sum _{i=1}^n \psi _{ij}=0 \quad \hbox {for any }j \in N \setminus \{n\}. \end{aligned}$$
(28)

In order to have a simple expression for the coefficients \(\psi _{ij}\), we introduce a particular set of evaluation for the agents, and then we consider the related gain game. For any \(j \in N \setminus \{n\}\), let the evaluations be as follows:

$$\begin{aligned} v_h= {\left\{ \begin{array}{ll} 1 &{} \hbox {if}\quad h \in J\\ 0 &{} \hbox {if}\quad h \in J^c \end{array}\right. }. \end{aligned}$$
(29)

Let \(v_{g,j}\) be the corresponding gain game. Clearly, from (2) we have:

$$\begin{aligned} \phi _i(v_{g,j}) = \psi _{ij} \quad \hbox {for any }i,j \in N. \end{aligned}$$

Moreover, by the symmetryFootnote 1 of the players in J and in \(J^c\), and, recalling that the Shapley value assigns equal amounts to symmetric players, we have

$$\begin{aligned} \psi _{1j}= & {} \psi _{2j} = \cdots = \psi _{jj} =a_j\nonumber \\ \psi _{j+1,j}= & {} \psi _{j+2,j} = \cdots = \psi _{nj} =b_j. \end{aligned}$$
(30)

To compute every \(\psi _{ij}\) we only need to determine the differences between \(\psi _{jj}\) and \(\psi _{j+1,j}\), which we can write as:

$$\begin{aligned} \psi _{jj}- \psi _{j+1,j} =a_j - b_j= \phi _j(v_{g,j}) - \phi _{j+1}(v_{g,j}). \end{aligned}$$
(31)

We now apply (25), together with Lemma (A.1). Noting that \(v_j - v_{j+1}=1\) in the game \(v_{gj}\), the Lemma distinguishes between two cases:

Case 1::

\(S \cap J = \varnothing \) and, therefore, \(S \subseteq J^c \setminus \{j+1\}\). The part of formula (25) pertaining these coalitions is present only when \(j \in N \setminus \{n-1,n\}\) and it is given by

$$\begin{aligned}&\sum _{S \subseteq J^c \setminus \{j+1\}} \frac{s!(n-s-2)!}{(n-1)!} \left( v_g(S \cup \{j\}) - v_g(S \cup \{j+1\})\right) \\&\quad =\sum _{S \subseteq J^c \setminus \{j+1\}} \frac{s!(n-s-2)!}{(n-1)!} \frac{(n-s-1)s}{n^2} = \frac{1}{n^2} \sum _{S \subseteq J^c \setminus \{j+1\}} \frac{s!(n-s-2)!(n-s-1)}{(n-1)!} s\\&\quad =\frac{1}{n^2} \sum _{S \subseteq J^c \setminus \{j+1\}} \frac{1}{\left( {\begin{array}{c}n-1\\ s\end{array}}\right) } s = \frac{1}{n^2} \sum _{s=1}^{n-j-1} \frac{\left( {\begin{array}{c}n-j-1\\ s\end{array}}\right) }{\left( {\begin{array}{c}n-1\\ s\end{array}}\right) } s. \end{aligned}$$
Case 2::

\(S \cap J \ne \varnothing \). The part of formula (25) pertaining this case is given by

$$\begin{aligned}&\quad \sum _{S \cap J \ne \varnothing , S \subseteq N \setminus \{j,j+1\}} -\ \frac{s! (n-s-2)!}{(n-1)!} \frac{n-s-1}{n^2}\\&\quad \quad = \ - \frac{1}{n^2} \sum _{S \cap J \ne \varnothing , S \subseteq N \setminus \{j,j+1\}} \frac{s! (n-s-1)!}{(n-1)!} = - \frac{1}{n^2} \sum _{S \cap J \ne \varnothing , S \subseteq N \setminus \{j,j+1\}} \frac{1}{\left( {\begin{array}{c}n-1\\ s\end{array}}\right) }. \end{aligned}$$

Now, we can choose a set of s units, with at least 1 unit from the first \(j-1\) in a number of ways given by

$$\begin{aligned} \sum _{t = \max \{1, s+j+1-n\}}^{\min \{j-1,s\}} \left( {\begin{array}{c}j-1\\ t\end{array}}\right) \left( {\begin{array}{c}n-j-1\\ s-t\end{array}}\right) ={\left\{ \begin{array}{ll} \left( {\begin{array}{c}n-2\\ s\end{array}}\right) - \left( {\begin{array}{c}n-j-1\\ s\end{array}}\right) &{} \hbox {if}\quad s \le n - j -1\\ \left( {\begin{array}{c}n-2\\ s\end{array}}\right)&\hbox {if}\quad s > n - j -1 \end{array}\right. }. \end{aligned}$$

Therefore, the part of (25) pertaining this case becomes

Joining the results for Cases 1 and 2 when \(j < n-1\), we have

$$\begin{aligned} \psi _{jj} - \psi _{j+1,j} = \frac{1}{n^2}\,\left[ \sum _{s=1}^{n-j-1} \frac{\left( {\begin{array}{c}n-j-1\\ s\end{array}}\right) }{\left( {\begin{array}{c}n-1\\ s\end{array}}\right) } s - \sum _{s=1}^{n-2} \frac{\left( {\begin{array}{c}n-2\\ s\end{array}}\right) }{\left( {\begin{array}{c}n-1\\ s\end{array}}\right) } + \sum _{s=1}^{n-j-1} \frac{\left( {\begin{array}{c}n-j-1\\ s\end{array}}\right) }{\left( {\begin{array}{c}n-1\\ s\end{array}}\right) }\right] . \end{aligned}$$
(32)

Applying Lemma 3.3 to the r.h.s. of (32), it is easy to check that

$$\begin{aligned} \psi _{jj} - \psi _{j+1,j} = \frac{1}{n^2}\,\left[ \frac{n\,(n-j-1)}{(j+1)\,(j+2)} - \frac{n-2}{2} + \frac{n-j-1}{j+1}\right] = \frac{2n - 3j - j^2}{2n(j+1)(j+2)}.\nonumber \\ \end{aligned}$$
(33)

To prove (3), we recall (28), (30) and solve the following system of linear equations in the variables \(a_j\) and \(b_j\)

$$\begin{aligned} \left\{ \begin{array}{l} j a_j + (n-j) b_j =0\\ a_j - b_j = \frac{2n - 3j - j^2}{2n(j+1)(j+2)}. \end{array}\right. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briata, F., Dall’Aglio, A., Dall’Aglio, M. et al. The Shapley value in the Knaster gain game. Ann Oper Res 259, 1–19 (2017). https://doi.org/10.1007/s10479-017-2651-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2651-8

Keywords

Navigation