Skip to main content
Log in

Norm convergence of double Fourier series on unbounded Vilenkin groups

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We study approximation by rectangular partial sums of double Fourier series on unbounded Vilenkin groups in the spaces C and L 1. From these results we obtain criterions of the uniform convergence and L-convergence of double Vilenkin–Fourier series. We also prove that these results are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinshtejn, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, Elm (Baku, 1981) (in Russian).

  2. Avdispahić M., Memić N.: On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups. Acta Math. Hungar., 129, 381–392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avdispahić M.: Concepts of generalized bounded variation and the theory of Fourier series. Internat. J. Math. Math. Sci., 9, 223–244 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avdispahić M., Pepić M.: Summability and integrability of Vilenkin series. Collect. Math., 51, 237–254 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Avdispahić M., Pepić M.: On summability in L p -norm on general Vilenkin groups. Taiwanese J. Math., 4, 285–296 (2000)

    MathSciNet  MATH  Google Scholar 

  6. A. V. Efimov, On certain approximation properties of periodic multiplicative orthonormal systems, Mat. Sb (N.S.), 69 (1966), 354–370 (in Russian).

  7. Fine N. J.: On the Walsh functions. Trans. Amer. Math. Soc., 65, 372–414 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gát G.: Cesà àro means of integrable functions with respect to unbounded Vilenkin systems. J. Approx. Theory, 124, 25–43 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gát G.: On the pointwise convergence of Cesà àro means of two-variable functions with respect to unbounded Vilenkin systems. J. Approx. Theory, 128, 69–99 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Getsadze R. D.: On the convergence and divergence of multiple Fourier series with respect to the Walsh–Paley system in the spaces C and L. Anal. Math., 13, 29–39 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goginava U.: On the uniform convergence and L-convergence of double Fourier series with respect to the Walsh–Kaczmarz system. Georgian Math. J., 10, 223–235 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Goginava U.: On the uniform convergence of Walsh–Fourier series. Acta Math. Hungar., 93, 59–70 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goginava U.: Uniform convergence of Cesà àro means of negative order of double Walsh–Fourier series. J. Approx. Theory, 124, 96–108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gát G., Goginava U.: Uniform and L-convergence of logarithmic means of Walsh–Fourier series. Acta Math. Sin. (Engl. Ser.), 22, 497–506 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Móricz F.: On the uniform convergence and L 1-convergence of double Walsh–Fourier series. Studia Math., 102, 225–237 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Schipp F.: On L p -norm convergence of series with respect to product systems. Anal. Math., 2, 49–64 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Scerbakov V. L.: Dini–Lipschitz test and convergence of Fourier series with respect to multiplicative systems. Anal. Math., 10, 133–150 (1984)

    Article  MathSciNet  Google Scholar 

  18. Simon P.: Verallgemeinerten Walsh–Fourier Reihen. I. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 16, 103–113 (1973)

    MathSciNet  MATH  Google Scholar 

  19. Simon P.: On the convergence of Vilenkin–Fourier series. Acta Math. Acad. Sci. Hungar., 33, 189–196 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Schipp, W. Wade, P. Simon and P. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger (Bristol, New York, 1990).

  21. Onneweer C. W., Waterman D.: Uniform convergence of Fourier series on groups. I. Michigan Math. J., 18, 265–273 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Zhizhiashvili, Trigonometric Fourier Series and their Conjugates, Tbilis. Gos. Univ. (Tbilisi, 1993) (in Russian); translated from the Russian by G. Kvinikadze, Mathematics and its Applications, 372, Kluwer Academic Publishers (Dordrecht, 1996).

  23. A. Zygmund, Trigonometric Series, vol. 1, Cambridge University Press (1959).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gát.

Additional information

The first author was supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. K111651.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gát, G., Goginava, U. Norm convergence of double Fourier series on unbounded Vilenkin groups. Acta Math. Hungar. 152, 201–216 (2017). https://doi.org/10.1007/s10474-017-0703-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-017-0703-9

Key words and phrases

Mathematics Subject Classification

Navigation