Skip to main content
Log in

Quasi-classical reasoning in paraconsistent databases

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The well-founded model for any general deductive database computed using the paraconsistent relational model, based on four-valued logic, does not support inference rules such as disjunctive syllogism. In order to support disjunctive syllogism, we utilize the generalization of the relational model to quasi-classic (QC) logic, whose inference power is much closer to classical logic. As the paraconsistent relational model is capable of representing incomplete and inconsistent data, we propose an algorithm to find QC model for inconsistent positive extended disjunctive deductive databases. We also provide the proof for the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcântara, J., Damásio, C.V., Pereira, L.M.: Paraconsistent Logic Programs. In: Logics in Artificial Intelligence, pp. 345–356. Springer (2002)

  2. Alcântara, J., Damásio, C. V., Pereira, L.M.: A Declarative Characterisation of Disjunctive Paraconsistent Answer Sets. In: ECAI. vol. 16, pp. 951. Citeseer (2004)

  3. Alcântara, J., Damásio, C. V., Pereira, L.M.: An encompassing framework for paraconsistent logic programs. J. Appl. Log. 3(1), 67–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arieli, O.: Paraconsistent declarative semantics for extended logic programs. Ann. Math. Artif. Intell. 36(4), 381–417 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arieli, O.: Distance-based paraconsistent logics. Int. J. Approx. Reason. 48(3), 766–783 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bagai, R.: Tuple Relational Calculus for Paraconsistent Databases. In: Advances in Artificial Intelligence, pp. 409–416. Springer (2000)

  7. Bagai, R., Sunderraman, R.: A paraconsistent relational data model. Int. J. Comput. Math. 55(1-2), 39–55 (1995)

    Article  MATH  Google Scholar 

  8. Bagai, R., Sunderraman, R.: Bottom-up computation of the fitting model for general deductive databases. J. Intell. Inf. Syst. 6(1), 59–75 (1996)

    Article  MATH  Google Scholar 

  9. Bagai, R., Sunderraman, R.: Computing the well-founded model of deductive databases. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 4(02), 157–175 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barceló, P., Bertossi, L.: Logic Programs for Querying Inconsistent Databases. In: Practical Aspects of Declarative Languages, pp. 208–222. Springer (2003)

  11. Belnap, Jr, N.D.: A Useful Four-Valued Logic. In: Modern Uses of Multiple-Valued Logic, pp. 5–37. Springer (1977)

  12. Blair, H.A., Subrahmanian, V.: Paraconsistent logic programming. Theor. Comput. Sci. 68(2), 135–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carnielli, W., Coniglio, M.E., Marcos, J.: Logics of Formal Inconsistency. In: Handbook of Philosophical Logic, pp. 1–93. Springer (2007)

  14. Chazarain, J., Riscos, A., Alonso, J., Briales, E.: Multi-valued logic and gröner bases with applications to modal logic. J. Symb. Comput. 11(3), 181–194 (1991)

    Article  MATH  Google Scholar 

  15. Damásio, C. V., Pereira, L.M.: A Survey of Paraconsistent Semantics for Logic Programs. In: Reasoning with Actual and Potential Contradictions, pp. 241–320. Springer (1998)

  16. Galindo, M.J.O., Ramírez, J.R.A., Carballido, J.L.: Logical weak completions of paraconsistent logics. J. Log. Comput. 18(6), 913–940 (2008). doi:10.1093/logcom/exn015

    Article  MathSciNet  MATH  Google Scholar 

  17. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. N. Gener. Comput. 9(3-4), 365–385 (1991)

    Article  MATH  Google Scholar 

  18. Greco, G., Greco, S., Zumpano, E.: A logical framework for querying and repairing inconsistent databases. IEEE Trans. Knowl. Data Eng. 15(6), 1389–1408 (2003)

    Article  Google Scholar 

  19. Greco, S., Zumpano, E.: Querying Inconsistent Databases. In: Logic for Programming and Automated Reasoning. pp. 308–325. Springer (2000)

  20. Hunter, A.: Paraconsistent logics handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions (1998)

  21. Hunter, A.: Reasoning with contradictory information using quasi-classical logic. J. Log. Comput. 10(5), 677–703 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jayakumar, B., Sunderraman, R.: Paraconsistent relational model: a quasi-classic logic approach. In: IJCAI Workshop. vol. 13, pp. 82–90 (2015)

  23. Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic, vol. 4. Prentice Hall, New Jersey (1995)

  24. Mayatskiy, N., Odintsov, S.P.: On deductive bases for paraconsistent answer set semantics. Journal of Applied Non-Classical Logics 23(1-2), 131–146 (2013)

    Article  MathSciNet  Google Scholar 

  25. Mendel, J.M.: Uncertain rule-based fuzzy logic system: introduction and new directions (2001)

  26. Minker, J., Ruiz, C.: Semantics for disjunctive logic programs with explicit and default negation. Fundamenta Informaticae 20(1, 2, 3), 145–192 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Molinaro, C., Chomicki, J., Marcinkowski, J.: Disjunctive databases for representing repairs. Ann. Math. Artif. Intell. 57(2), 103–124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Osorio, M., Pérez, J.A.N., Ramírez, J.R.A., Macías, V.B.: Logics with common weak completions. J. Log. Comput. 16(6), 867–890 (2006). doi:10.1093/logcom/exl013

    Article  MathSciNet  MATH  Google Scholar 

  29. Osorio, M., Zepeda, C., Nieves, J.C., Carballido, J.L.: G’3-stable semantics and inconsistency. Computación y Sistemas 13(1), 75–86 (2009)

    Google Scholar 

  30. Poole, D.: What the lottery paradox tells us about default reasoning. KR 89, 333–340 (1989)

    MathSciNet  MATH  Google Scholar 

  31. Ricca, F., Faber, W., Leone, N.: A backjumping technique for disjunctive logic programming. AI Commun. 19(2), 155–172 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J. Log. Comput. 5(3), 265–285 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Subrahmanian, V.: Paraconsistent Disjunctive Deductive Databases. In: Proceedings of the Twentieth International Symposium on Multiple-Valued Logic, 1990. pp. 339–346. IEEE (1990)

  34. Subrahmanian, V.: Paraconsistent disjunctive deductive databases. Theor. Comput. Sci. 93(1), 115–141 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sunderraman, R.: Modeling Negative and Disjunctive Information in Relational Databases. In: Database and Expert Systems Applications. pp. 337–346. Springer (1997)

  36. Zhang, X., Xiao, G., Lin, Z., Van den Bussche, J.: Inconsistency-tolerant reasoning with owl dl. Int. J. Approx. Reason. 55(2), 557–584 (2014)

  37. Zhang, Z., Lin, Z., Ren, S.: Quasi-Classical Model Semantics for Logic Programs–A Paraconsistent Approach. In: Foundations of Intelligent Systems, pp. 181–190. Springer (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badrinath Jayakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, B., Sunderraman, R. Quasi-classical reasoning in paraconsistent databases. Ann Math Artif Intell 82, 131–159 (2018). https://doi.org/10.1007/s10472-017-9536-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-017-9536-z

Keywords

Mathematics Subject Classification (2010)

Navigation