Skip to main content
Log in

Logic of temporal attribute implications

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We study logic for reasoning with if-then formulas describing dependencies between attributes of objects which are observed in consecutive points in time. We introduce semantic entailment of the formulas, show its fixed-point characterization, investigate closure properties of model classes, present an axiomatization and prove its completeness, and investigate alternative axiomatizations and normalized proofs. We investigate decidability and complexity issues of the logic and prove that the entailment problem is NP-hard and belongs to EXPSPACE. We show that by restricting to predictive formulas, the entailment problem is decidable in pseudo-linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (New York, NY, USA), SIGMOD ’93, ACM, pp. 207–216 (1993)

  2. Ale, J.M., Rossi, G.H.: An approach to discovering temporal association rules. In: Proceedings of the 2000 ACM Symposium on Applied Computing (New York, NY, USA), SAC ’00, vol. 1, pp. 294–300. ACM (2000)

  3. Armstrong, W.W.: Dependency structures of data base relationships. In: Rosenfeld, J. L., Freeman, H. (eds.) Information Processing 74: Proceedings of IFIP Congress (Amsterdam), pp.580–583, North Holland (1974)

  4. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The complexity of clausal fragments of LTL. arXiv:1306.5088 (2013)

  5. Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal concept analysis with pattern structures. Ann. Math. Artif. Intell. 72(1–2), 129–149 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4, 30–59 (1979)

    Article  Google Scholar 

  7. Bettini, C., Jajodia, S., Wang, X.S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer (2000)

  8. Biedermann, K.: A Foundation of the Theory of Trilattices. Dissertation, TU Darmstadt, Aachen (1998)

  9. Birkhoff, G.: Lattice theory. American Mathematical Society (1940)

  10. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press, Secaucus, NJ, USA (2002)

  11. Chomicki, J., Imieliński, T.: Temporal deductive databases and infinite objects. In: Proceedings of the 7Th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (New York, NY, USA), PODS ’88, ACM, pp. 61–73 (1988)

  12. Chomicki, J., Imieliński, T.: Relational specifications of infinite query answers. In: Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data (New York, NY, USA), SIGMOD ’89, ACM, pp. 174–183 (1989)

  13. Chomicki, J., Imieliński, T.: Finite representation of infinite query answers. ACM Trans. Database Syst. 18(2), 181–223 (1993)

    Article  Google Scholar 

  14. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13, 377–387 (1970)

    Article  MATH  Google Scholar 

  15. Combi, C., Sala, P.: Interval-based temporal functional dependencies: specification and verification. Ann. Math. Artif. Intell. 71(1–3), 85–130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cordero, P., Mora, Á., Pérez de Guzmán, I., Enciso, M.: Non-deterministic ideal operators: an adequate tool for formalization in data bases. Discret. Appl. Math. 156(6), 911–923 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cresswell, S., Coddington, A.M.: Compilation of LTL goal formulas into PDDL. In: López de Mántaras, R., Saitta, L. (eds.) Proceedings of the 16Th Eureopean Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pp. 985–986. IOS Press (2004)

  18. Date, C.J., Darwen, H.: Relational Database Writings 1989–1991. Ch. The Role of Functional Dependence in Query Decomposition, pp. 133–154. Addison-Wesley Publishing Co. Inc. (1992)

  19. Date, C.J., Darwen, H., Lorentzos, N.A.: Time and Relational Theory: Temporal Databases in the Relational Model and SQL. Morgan Kaufmann (2014)

  20. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)

  21. De Cat, B., Bruynooghe, M.: Detection and exploitation of functional dependencies for model generation. Theory Pract. Logic Program. 13(4–5), 471–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dieng, C.T., Jen, T.-Y., Laurent, D., Spyratos, N.: Mining frequent conjunctive queries using functional and inclusion dependencies. VLDB J. 22(2), 125–150 (2013)

    Article  Google Scholar 

  23. Fagin, R.: Functional dependencies in a relational database and propositional logic. IBM J. Res. Dev. 21(6), 534–544 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fan, W., Li, J., Tang, N., Yu, W.: Incremental detection of inconsistencies in distributed data. IEEE Trans. Knowl. Data Eng. 26(6), 1367–1383 (2014)

    Article  Google Scholar 

  25. Feng, L., Dillon, T., Liu, J.: Inter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meterological data. Data Knowl. Eng. 37(1), 85–115 (2001)

    Article  MATH  Google Scholar 

  26. Feng, L., Yu, J. X., Lu, H., Han, J.: A template model for multidimensional inter-transactional association rules. VLDB J. 11(2), 153–175 (2002)

    Article  Google Scholar 

  27. Ferrarotti, F., Hartmann, S., Link, S.: Reasoning about functional and full hierarchical dependencies over partial relations. Inform. Sci. 235, 150–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gaintzarain J., Lucio, P.: Logical foundations for more expressive declarative temporal logic programming languages. ACM Trans. Comput. Logic 14(4), 28:1–28:41 (2013)

  29. Ganter, B.: Two basic algorithms in concept analysis. In: Proceedings of the 8Th International Conference on Formal Concept Analysis (Berlin, Heidelberg), ICFCA’10, pp. 312–340. Springer (2010)

  30. Ganter B., Obiedkov, S.: Implications in triadic formal contexts. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) Conceptual Structures at Work, Lecture Notes in Computer Science, vol. 3127, pp. 186–195. Springer, Berlin Heidelberg (2004)

  31. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer, New York (1997)

    Google Scholar 

  32. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of np-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  33. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., Wilkins, D.: Pddl—the planning domain definition language, version 1.2. technical report cvc tr-98-003/dcs tr-1165 (oct.). Tech. report, Yale Center for Computational Vision and Control, Yale University (1998)

  34. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)

    Google Scholar 

  35. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)

    Book  MATH  Google Scholar 

  36. Huang, Y.-P., Kao, L.-J., Sandnes, F.-E.: Efficient mining of salinity and temperature association rules from argo data. Expert Syst. Appl. 35(1–2), 59–68 (2008)

    Article  Google Scholar 

  37. Ibaraki, T., Kogan, A., Makino, K.: On functional dependencies in q-horn theories. Artif. Intell. 131(1–2), 171–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin, Heidelberg (2004)

    Book  MATH  Google Scholar 

  39. Lee, A.J.T., Wang, C.-S., Weng, W.-Y., Chen, Y.-A., Wu, H.-W.: An efficient algorithm for mining closed inter-transaction itemsets. Data Knowl. Eng. 66(1), 68–91 (2008)

    Article  Google Scholar 

  40. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) Conceptual Structures: Applications, Implementation and Theory, Lecture Notes in Computer Science, vol. 954, pp. 32–43. Springer, Berlin, Heidelberg (1995)

  41. Li, J., Liu, J., Toivonen, H., Yong, J.: Effective pruning for the discovery of conditional functional dependencies. Comput. J. 56(3), 378–392 (2013)

    Article  Google Scholar 

  42. Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. Data Knowl. Eng. 44(2), 193–218 (2003)

    Article  Google Scholar 

  43. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32(3), 186–195 (1966)

    MathSciNet  MATH  Google Scholar 

  44. Liu, J., Ye, F., Li, J., Wang, J.: On discovery of functional dependencies from data. Data Knowl. Eng. 86, 146–159 (2013)

    Article  Google Scholar 

  45. Lloyd, J.W.: Foundations of Logic Programming. Springer New York, Inc., New York (1984)

    Book  MATH  Google Scholar 

  46. Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: mining multidimensional intertransaction association rules. ACM Trans. Inf. Syst. 18 (4), 423–454 (2000)

    Article  Google Scholar 

  47. Ma, S., Fan, W., Bravo, L.: Extending inclusion dependencies with conditions. Theor. Comput. Sci. 515, 64–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Maier, D.: Theory of Relational Databases. Computer Science Pr, Rockville (1983)

    MATH  Google Scholar 

  49. McCarthy, J., Hayes, P.J.: Readings in Nonmonotonic Reasoning, pp. 26–45. Morgan Kaufmann Publishers Inc., San Francisco (1987)

    Google Scholar 

  50. Mostowski, A.: On a generalization of quantifiers. Fundam. Math. 44(1), 12–36 (1957)

    MathSciNet  MATH  Google Scholar 

  51. Oliveira, J.N.: A relation-algebraic approach to the “Hoare logic” of functional dependencies. Journal of Logical and Algebraic Methods in Programming 83(2), 249–262 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing Co. Inc. (1994)

  53. Pinto, J., Reiter, R.: Reasoning about time in the situation calculus. Ann. Math. Artif. Intell. 14(2), 251–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  54. Rainsford, C.P., Roddick, J.F.: Adding temporal semantics to association rules. In: żytkow, J.M., Rauch, J. (eds.) Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, vol. 1704, pp. 504–509. Springer, Berlin, Heidelberg (1999)

  55. R. Reiter: Artificial intelligence and mathematical theory of computation, pp 359–380. Academic Press Professional, Inc., San Diego (1991)

  56. Reynolds, M.: The complexity of decision problems for linear temporal logics. Journal of Studies in Logic 3(1), 19–50 (2010)

    MathSciNet  Google Scholar 

  57. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  58. Song, S., Chen, L., Cheng, H.: Efficient determination of distance thresholds for differential dependencies. IEEE Trans. Knowl. Data Eng. 26(9), 2179–2192 (2014)

    Article  Google Scholar 

  59. Szabo, G.I., Benczur, A.: Functional dependencies on symbol strings generated by extended context free languages. In: Morzy, T., Harder, T., Wrembel, R. (eds.) Advances in Databases and Information Systems, Advances in Intelligent Systems and Computing, vol. 186, pp. 253–264 (2013)

  60. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  61. Triska, J., Vychodil, V.: Towards Armstrong-style inference system for attribute implications with temporal semantics. In: Torra, V., Narukawa, Y., Endo, Y. (eds.) Modeling Decisions for Artificial Intelligence – 11Th International Conference, MDAI 2014, Tokyo, Japan, October 29-31, 2014. Proceedings, Lecture Notes in Computer Science, vol. 8825, pp. 84–95. Springer (2014)

  62. Triska, J., Vychodil, V.: Minimal bases of temporal attribute implications. in preparation (2016)

  63. Tung, A.K.H., Lu, H., Han, J., Feng, L.: Breaking the barrier of transactions: mining inter-transaction association rules. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA), KDD ’99, ACM, pp. 297–301 (1999)

  64. Vincent, M.W., Liu, J., Mohania, M.K.: The implication problem for ‘closest node’ functional dependencies in complete XML documents. J. Comput. Syst. Sci. 78 (4), 1045–1098 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wellman, M.P.: Exploiting functional dependencies in qualitative probabilistic reasoning. arXiv:1304.1081 (2013)

  66. Zaki, M.J.: Mining non-redundant association rules. Data Min. Knowl. Disc. 9, 223–248 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Triska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triska, J., Vychodil, V. Logic of temporal attribute implications. Ann Math Artif Intell 79, 307–335 (2017). https://doi.org/10.1007/s10472-016-9526-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-016-9526-6

Keywords

Mathematics Subject Classification (2010)

Navigation