Skip to main content
Log in

A Ku-band dual control path frequency synthesizer using varactorless Q-enhanced LC-type VCO

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This study focused on the design principle and implementation of a high-frequency, wide-range frequency synthesizer by using a dual control path phase-lock loop (PLL) and a varactorless oscillator controlled by inductive–capacitive (LC-type) voltage (i.e., a voltage-controlled oscillator, VCO). Without a varactor in the LC tank, the tuned-transducer oscillator with Q-enhanced functionality can easily arrive at the requirements of high-frequency wide-range low-noise operations. We utilized a difference tuned varactorless VCO to create two different KVCOs and applied it to a dual control path PLL architecture to obtain wide tuning range and more favorable phase noise. In addition, a high-speed current-mode logic divider was employed given its high speed (because of the use of a transformer inductor), extremely high operation frequency, and wide-range. The proposed PLL was assembled using the standard 0.13-μm CMOS technology on a 0.95 × 1.05 mm2 chip. The PLL dissipated 40 mW at a 1.2 V supply. The measurement of phase noise at 17.64 GHz was − 98.12 dBc/Hz at a 1 MHz offset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bae, J., Yan, L., & Yoo, H. J. (2011). A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE Journal of Solid-State Circuits, 46(4), 928–937.

    Article  Google Scholar 

  2. Razavi, B. (2008). A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider. IEEE Journal of Solid-State Circuits, 43(2), 477–485.

    Article  MathSciNet  Google Scholar 

  3. Yang, C. Y., & Tsai, M. T. (2006). High-frequency low-noise voltage-controlled LC-tank oscillators using a tunable inductor technique. IEICE Transactions on Electronics, E89-C(11), 1567–1574.

    Article  Google Scholar 

  4. Kwok, K., & Long, J. R. (2007). A 23-to-29 GHz transconductor-tuned VCO MMIC in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 42(12), 2878–2886.

    Article  Google Scholar 

  5. Yang, C.-Y., Chang, C.-H., & Weng, J.H. (2013). A 35-GHz frequency synthesizer using frequency doubling and phase rotating technology. In International symposium on communications and information technologies (ISCIT), Samui Island, Thailand (pp. 266–270).

  6. Lin, L., & Gray, P. R. (2000). A 1.4 GHz differential low-noise CMOS frequency synthesizer using a wideband PLL architecture. In IEEE international solid-state circuits conference digest of technical paper, San Francisco, CA (pp. 204–205, 458).

  7. Koo, Y., Huh, H., Cho, Y., Lee, J., Park, J., Lee, K., et al. (2002). A fully integrated CMOS frequency synthesizer with charge-averaging charge pump and dual-path loop filter for PCS- and cellular-CDMA wireless systems. IEEE Journal of Solid-State Circuits, 37, 536–542.

    Article  Google Scholar 

  8. Sarang, K., Khayrollah, H., & Abdollah, K. (2015). A wide-range low-jitter PLL based on fast-response VCO and simplifed straightforward methodology of loop stabilization in integer-N PLLs. Journal of Circuits, Systems, and Computers, 24(7), 1550104-1–1550104-24.

    Google Scholar 

  9. Fong, N. H. W., Plouchart, J. O., Zamdmer, N., Liu, D., Wagner, L. F., Plett, C., et al. (2003). A 1-V 3.8-5.7-GHz wide-band VCO with differential tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology. IEEE Transactions on Microwave Theory and Techniques, 51(8), 1952–1959.

    Article  Google Scholar 

  10. Tang, Z., He, J., & Min, H. (2005). A low-phase-noise 1-GHz LC VCO differentially tuned by switched step capacitors. IEEE Asian Solide-State Circuits Conference (pp. 409–412). Taiwan: Hsinchu.

    Google Scholar 

  11. Mizuno, M., Yamashina, M., Furuta, K., Igura, H., Abiko, H., Okabe, K., et al. (1996). A GHz MOS adaptive pipeline technique using MOS current-mode logic. IEEE Journal of Solid-State Circuits, 31(6), 784–791.

    Article  Google Scholar 

  12. Piazza, F., & Huang, Q. (1997). A low power CMOS dual modulus prescaler for high-speed frequency synthesizer. IEICE Transactions on Electronics, E80-C(2), 314–319.

    Google Scholar 

  13. Yuan, J., & Svensson, C. (1989). High-speed CMOS circuit technique. IEEE Journal of Solid-State Circuits, 24(1), 62–70.

    Article  Google Scholar 

  14. Worapishet, A. (2006). Extended phase noise performance in mutual negative resistance CMOS LC oscillator for low supply voltages. IEICE Transactions on Electronics, E89-C(6), 732–738.

    Article  Google Scholar 

  15. Herzel, F., Fischer, G., Gustat, H., & Weger, P. (2002). An integrated CMOS PLL for low-jitter applications. IEEE Transactions on Circuits and Systems, 49, 427–429.

    Article  Google Scholar 

  16. Craninckx, J., & Steyaert, M. (1998). A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE Journal of Solid-State Circuits, 33, 2054–2065.

    Article  MATH  Google Scholar 

  17. Ding, Y., & Kenneth, K. O. (2007). A 21-GHz 8-modulus prescaler and a 20-GHz phase-locked loop fabricated in 130-nm CMOS. IEEE Journal of Solid-State Circuits, 42(6), 1240–1249.

    Article  Google Scholar 

  18. Kang, K., & Lin, F. (2010). A 20-GHz integer-N frequency synthesizer for 60-GHz transceivers in 90 nm CMOS. In Proceedings of the IEEE-ICUWB, Nanjing, China (pp. 1–4).

  19. Cao, C., & Kenneth, K. O. (2005). A power efficient 26-GHz 32: 1 static frequency divider in 130-nm bulk CMOS. IEEE Microwave and Wireless Components Letters, 15(11), 721–723.

    Article  Google Scholar 

  20. Adem, A., & Mohammed, I. (2004). CMOS PLLs and VCOs for 4G wireless. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  21. Leeson, D. B. (1966). A simple model of feedback oscillator noise spectrum. Proceedings of IEEE, 54(2), 329–330.

    Article  Google Scholar 

  22. Razavi, B. (1996). Monolithic phase-locked loops and clock recovery. Piscataway, NJ: IEEE Press.

    Book  Google Scholar 

  23. Rylyakov, A., Tierno, J., Ainspan, H., Plouchart, J.O., Bulzacchelli, J., & Deniz, Z.T., et al. (2009). Bang-bang digital PLLs at 11 and 20 GHz with sub-200 fs integrated jitter for high-speed serial communication applications. In IEEE ISSCC digest of technical papers, San Francisco, CA (pp. 94–95).

  24. Kim, J., Kim, J. K., Lee, B. J., Kim, N., Jeong, D. K., & Kim, W. (2006). A 20-GHz phase-locked loop for 40-Gb/s Serializing Transmitter in 0.13-μn CMOS. IEEE Journal of Solid-State Circuits, 41, 899–908.

    Article  Google Scholar 

  25. Floyd, B. (2008). A 16–18 GHz sub-integer-N frequency synthesizer for 60-GHz transceivers. IEEE Journal of Solid-State Circuits, 43(5), 1076–1086.

    Article  Google Scholar 

  26. Weng, J. H., Cheng, S., Chiu, C. K., & Chang, C. H. (2016). Ka-band frequency synthesizer involving a varactorless LC-type voltage-controlled oscillator and phase rotation. Microelectronics Journal, 49, 19–28.

    Article  Google Scholar 

  27. Chen, Y., & Mouthaan, K. (2010). Wideband varactorless LC VCO using a tunable negative-inductance cell. IEEE Transactions on Circuits and Systems I: Regular Paper, 57(10), 2609–2617.

    Article  MathSciNet  Google Scholar 

  28. Yang, C. Y., & Tsai, M. T. (2007). A voltage-controlled varactorless LC-tank oscillator with a transformer-feedback technique. Microwave and Optical Technology Letters, 49(11), 2808–2810.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Tunghai University, Taiwan, R.O.C. The author would like to thank the National Chip Implementation Center (CIC), Taiwan, R.O.C., for fabricating the chip. This study was also supported by the Ministry of Science and Technology (MOST 106-2221-E-029-028), Taiwan, R.O.C.

Funding

The study was funded by the Ministry of Science and Technology (Grant Number MOST 106-2221-E-029-028), Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Hong Weng.

Ethics declarations

Conflict of interest

The author declares there are no conflicts of interest.

Research involving human participants and/or animals

There were not any human participants and/or animals in the study.

Informed consent

There were not any informed consent in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, JH., Teng, KW. A Ku-band dual control path frequency synthesizer using varactorless Q-enhanced LC-type VCO. Analog Integr Circ Sig Process 100, 47–59 (2019). https://doi.org/10.1007/s10470-019-01454-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01454-6

Keywords

Navigation