Skip to main content
Log in

A design of ± 0.28 ppm temperature-compensated crystal oscillator in a 0.35 μm CMOS process

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A high-performance temperature-compensated crystal oscillator (TCXO) is presented. This paper proposes a new temperature sensor with a Σ–Δ analog to digital converter, and a voltage-controlled crystal oscillator, respectively, using two sets of independent power supply. The presented TCXO is implemented in a 0.35 μm 2P3 M standard complementary metal-oxide semiconductor process at a power supply of 3.3 V, and the total power dissipation is 21 mW. Measurement results indicate that the designed TCXO achieves ± 16 ppm output frequency tuning range and 135, − 141 dBc/Hz phase noise at 1, 10 kHz frequency offset, respectively, by using a 40 MHz fundamental AT-cut crystal resonator. With the temperature compensation, the frequency deviation is within ± 0.28 ppm over − 40 °C to 85 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. van Diggelen, Frank. (2009). A-GPS: Assisted GPS, GNSS, and SBAS. Norwood: Artech House Publishers.

    Google Scholar 

  2. Rohde, U. L., Poddar, A. K., & Böck, G. (2005). The design of modern microwave oscillators for wireless applications: Theory and optimization. Hoboken: Wiley.

    Book  Google Scholar 

  3. Decarli, N., Guidi, F., Conti, A., & Dardari, D. (2012). Interference and clock drift effects in UWB RfiD systems using backscatter modulation. In Proceedings of the IEEE international conference on ultra-wideband (pp. 546–550)

  4. Melamud, R., Kim, B., Chandorkar, S. A., Hopcroft, M. A., Agarwal, M., Jha, C. M., & Kenny, T. W. (2007). Temperature compensated high-stability silicon resonators. Applied Physics Letters, 90(24), 244107. https://doi.org/10.1063/1.2748092.

    Article  Google Scholar 

  5. Achenbach, R., Feuerstack-Raible, M., Hiller, F., et al. (2000). A digitally temperature-compensated crystal oscillator. IEEE Journal of Solid-State Circuits, 35, 1502–1506.

    Article  Google Scholar 

  6. Lin, J. (2005). A low-phase-noise 0.004-ppm/step DCXO with guaranteed monotonicity in the 90-nm CMOS process. IEEE Journal of Solid-State Circuits, 40, 2726–2734.

    Article  Google Scholar 

  7. Makoto, W., Umeki, M., & Okazaki, M. (2006). High performance VCXO with 622.08 MHz fundamental quartz crystal resonator. In International frequency control symposium and exposition, 2006 IEEE.

  8. Farahvash, S., Quek, C., & Mak, M. (2008). A temperature-compensated digitally-controlled crystal pierce oscillator for wireless applications. In IEEE international digest of technical papers on solid-state circuits conference 2008, ISSCC 2008, 19.7.

  9. Razavi, B. (2002). Design of analog CMOS integrated circuits. New York: McGraw-Hill Education.

    Google Scholar 

  10. Niknejad, A. EE242 lecture notes, U.C. Berkeley, Spring 2007.

  11. Aebischer, D., Oguey, H., & von Kaenel, V. (1997). A 2.1 MHz crystal oscillator time base with a current consumption under 500 nA. IEEE Journal of Solid-State Circuits, 32(7), 999–1005.

    Article  Google Scholar 

  12. Andreani, P., & Mattisson, S. (2000). On the use of MOS varactors in RF VCOs. IEEE Journal of Solid-State Circuits, 35(6), 905–910.

    Article  Google Scholar 

  13. Jin, J., Yu, X., Liu, X., Lim, W. M., & Zhou, J. (2014). A wideband voltage-controlled oscillator with gain linearized varactor bank. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(5), 905–910.

    Article  Google Scholar 

  14. Sansen, W. M. C. (2006). Analog design essentials, chapter 6. Berlin: Springer.

    Google Scholar 

  15. De La Cruz-Blas, C. A., López-Martín, A., & Carlosena, A. (2003). 1.5-V MOS translinear loops with improved dynamic range and their applications to current-mode signal processing. IEEE Transactions on Circuits Systems II: Express Brief, 50, 12.

    Article  Google Scholar 

  16. Vittoz, E. (2010). Low-power crystal and MEMS oscillators: The experience of watch developments. Berlin: Springer.

    Book  Google Scholar 

  17. Kao, S.-H., Tsao, M.-F., Chiang, C.-W., & Chao, M.-C. In 2014 symposium on piezoelectricity, acoustic waves, and device applications, Beijing, China.

  18. Zaliasl, S., Salvia, J. C., Hill, G. C., et al. (2015). A 3 ppm 1.5 × 0.8 mm2 1.0 µA 32.768 kHz MEMS-based oscillator. IEEE Journal of Solid-State Circuits, 35(6), 905–910.

    Google Scholar 

  19. Tran, T.-H., Peng, H.-W., Chao, P. C.-P., & Hsieh, J.-W. (2017). A low-ppm digitally controlled crystal oscillator compensated by a new 0.19-mm2 time-domain temperature sensor. IEEE Sensors Journal, 17(1), 51–62.

    Article  Google Scholar 

Download references

Acknowledgments

This work is sponsored by National Natural Program on Key Basic Research Project (973 Program) (No. 2015CB352103). The author would like to thank Dr. Jie Chen and Dr. Yang for their useful discussions and instruction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Yang, Y. & Chen, J. A design of ± 0.28 ppm temperature-compensated crystal oscillator in a 0.35 μm CMOS process. Analog Integr Circ Sig Process 100, 157–166 (2019). https://doi.org/10.1007/s10470-019-01442-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01442-w

Keywords

Navigation