Skip to main content
Log in

Low power analog comb filter for biomedical applications

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An analog topology is proposed to implement a comb filter for removal of power-line interference from various low-amplitude biomedical signals. In this proposed methodology, an n-number of all-pass filters (APFs) and an adder circuit are used to suppress n-number of frequencies. All the APFs as well as the adder circuit are designed using a current conveyor to utilize the various properties of the current-mode circuits. The active and passive components used to design the comb filter include second-generation current conveyor (CCII±), resistor, and capacitor. The circuit is designed for n = 4 to remove the power-line frequency of 50 Hz, and its three odd harmonics such as 150 Hz, 250 Hz, and 350 Hz. A PSPICE simulation is done to verify the performance of the proposed circuit. In simulation, all CCII± are designed using macro model of commercially-available current feedback operational amplifier integrated circuit (IC) AD844 as well as dynamic threshold voltage metal oxide semiconductor technology. The proposed circuit is also implemented also using commercially available IC AD844 on breadboard for n = 3. The output result on digital storage oscilloscope confirm the effectiveness of the proposed comb filter circuit in removing the power line interference i.e. the power-line frequency and its odd harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. Huhta, J. C., & Webster, J. G. (1973). 60-Hz interference in electrocardiography. IEEE Transactions on Biomedical Engineering, 20(2), 91–101.

    Article  Google Scholar 

  2. Hamilton, P. S. (1996). A comparison of adaptive and nonadaptive filters for reduction of power line interference in the ECG. IEEE Transactions on Biomedical Engineering, 43(I), 105–109.

    Article  Google Scholar 

  3. Van Alste, J. A., & Schilder, T. S. (1985). Removal of base-line wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps. IEEE Transactions on Biomedical Engineering, 32(12), 1052–1059.

    Article  Google Scholar 

  4. Mantri, S., Agrawal, P., Patil, D., & Wadhai, V. (2015). Non invasive EEG signal processing framework for real time depression analysis. In: SAI intelligent systems conference (pp. 10–11), London, UK.

  5. Vigario, R., Sarela, J., Jousmaki, V., Hamalainen, M., & Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. IEEE Transactions on Biomedical Engineering, 47(5), 589–593.

    Article  Google Scholar 

  6. Singh, B., Singh, P., & Budhiraja, S. (2015). Various approaches to minimise noises in ECG signal: A survey. In: Fifth international conference on advanced computing & communication technologies (pp. 131–137), London, UK.

  7. Ziarani, A. K., & Konrad, A. A. (2002). Non-linear adaptive method of elimination of power line interference in ECG signals. IEEE Transactions on Biomedical Engineering, 49(6), 540–547.

    Article  Google Scholar 

  8. Tsai, C., Chiou, D., Lin, Y., Chan, H., & Wu, C. (1998). An active comb filter design for harmonic interference removal. Journal of the Chinese Institute of Engineers, 21(5), 605–610.

    Article  Google Scholar 

  9. Mishra, S., Das, D., Kumar, R., & Sumathi, P. (2015). A power-line interference canceler based on sliding DFT phase locking scheme for ECG signals. IEEE Transactions on Instrumentation and Measurement, 64(1), 132–142.

    Article  Google Scholar 

  10. Tomasini, M., & Benatti, S. (2016). Power line interference removal for high-quality continuous biosignal monitoring with low-power wearable devices. IEEE Sensors Journal, 16(10), 3887–3895.

    Article  Google Scholar 

  11. Dhillon, S. S., & Chakrabarti, S. (2001). Power line interference removal from electrocardiogram using a simplified lattice based adaptive IIR notch filter. In: Proceedings23rd annual conferenceIEEE/EMBS (pp. 25–28), Turkey.

  12. Ziarani, A. K. (2002). A nonlinear adaptive method of elimination of power line interference in ECG signals. IEEE Transactions on Biomedical Engineering, 49(6), 540–547.

    Article  Google Scholar 

  13. Chang, C. (2010). Cancellation of high-frequency noise in ECG signals using adaptive filter without external reference. In: 3rd international conference on biomedical engineering and informatics (BMEI) (pp. 787–790), Yantai, China.

  14. Gaikwad, K. M. (2014). Removal of high frequency noise from ECG signal using digital IIR butterworth filter. In: IEEE global conference on wireless computing and networking (GCWCN) (pp. 121–124), Lonavala, India.

  15. Liu, Y., & Chang, N. (2004). An adaptive algorithm for canceling power-line interference in biopotential measurement. Biomedical Engineering Applications. Basis & Communications, 16(06), 350–354.

    Article  Google Scholar 

  16. Martens, S. M. M. (2006). An improved adaptive power line interference canceller for electrocardiography. IEEE Transactions on Biomedical Engineering, 53(11), 2220–2231.

    Article  Google Scholar 

  17. Yamamoto, Y. (1998). Elimination of power line interference in ECG signal using inverse loop. In: Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society (pp. 3313–3314), Hong Kong, China.

  18. Verma, A. R., & Singh, Y. (2015). Adaptive tunable notch filter for ECG signal enhancement. In: 3rd international conference on recent trends in computing (ICRTC-2015) (pp. 332–337).

    Article  Google Scholar 

  19. Zaitsev, E. V. (2015). Elimination on power line interference from ECG signal using combined bidirectional narrowband notch filter. Biophysics, 60(4), 656–658.

    Article  Google Scholar 

  20. Tsai, C., Chan, H. (1994). Harmonic interference elimination by an active comb Filter. In: Proceedings of 16th annual international conference on IEEE of engineering in medicine and biology society (Vol. 2, pp. 964–965), Department of Electrical Engineering, Taiwan University, Baltimore, MD, USA.

  21. Ranjan, R. K., Yalla, S. P., Sorya, S., & Paul, S. K. (2014). Active comb filter using operational transconductance amplifier. Active and Passive Electronic Components, 2014, 1–6.

    Article  Google Scholar 

  22. Ranjan, R. K., Choubey, C. K., Nagar, B. C., & Paul, S. K. (2016). Comb filter for elimination of unwanted power line interference in biomedical signal. Journal of Circuits, Systems, and Computers, 25(6), 1–16.

    Article  Google Scholar 

  23. Stornelli, V., & Ferri, G. (2014). A single current conveyor-based low voltage low power bootstrap circuit for ElectroCardioGraphy and ElectroEncephaloGraphy acquisition systems. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-013-0252-2.

    Article  Google Scholar 

  24. Ling, C., & Luo, M. (2008). Research of the ASIC used for EEG signal detecting. In: 2nd international conference on anti-counterfeiting, security and identification, Guiyang, China.

  25. Ma C., Mak, P., & Vai, M. (2009) A 90 nm CMOS bio-potential signal readout front-end with improved powerline interference rejection. In: IEEE conference (pp. 665–668), Taipei, Taiwan.

  26. Yazicioglu, R. F., & Merken, P. (2007). A 60 µW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE Journal of Solid-State Circuits, 42(5), 1100–1110.

    Article  Google Scholar 

  27. Casper, B. K., & Comer, D. J. (1999). An integrable 60-Hz notch filter. IEEE Transactions on Circuits and Systems: Analog and Digital Signal Processing, 46(1), 74–77.

    Article  Google Scholar 

  28. Bai, Y., & Chu, W. (2004). Adjustable 60 Hz noise reduction by a notch filter for ECG signals. In: IEEE conference on instrumentation and measurement technology (pp. 1706–1711), Como, Italy.

  29. Ferri, G., & Stornelli, V. (2011). A CCII-based high impedance input stage for biomedical applications. World Scientific Journal of Circuits, Systems, and Computers, 20(8), 1441–1447.

    Article  Google Scholar 

  30. Li, K. Xi., Zhang, J. Y., & Wang, L. (2011). A fully integrated continuous time 50 Hz notch filter with center frequency tenability. Bulletin of Advance Technology Research, 5(7), 24–28.

    Google Scholar 

  31. Qian, X., Xu, Y. P., & Li, X. (2005). A CMOS continuous-time low-pass notch filter for EEG systems. Analog Integrated Circuits and Signal Processing, 44(3), 231–238.

    Article  Google Scholar 

  32. Ma, C., Mak, P., Vai, M., Mak, P., Pun, S., Feng, W., et al. (2009). Frequency-bandwidth-tunablepowerline notch filter for biopotentialacquisition systems. Electronics Letters, 45(4), 197–199.

    Article  Google Scholar 

  33. Lee, S., & Cheng, C. (2009). Systematic design and modeling of a OTA-C filter for portable ECG detection. IEEE Transactions on Biomedical Circuits and Systems, 3(1), 53–64.

    Article  Google Scholar 

  34. Frey, D. R. (1993). Log-domain filtering: an approach to current-mode filtering. IEEE Proceedings-G, 140(6), 406–416.

    Google Scholar 

  35. Prasada, D., & Bhaskara, D. R. (2009). Universal current-mode biquad filter using dual output current differencing transconductance amplifier. AEU-International Journal of Electronics and Communications, 63(6), 497–501.

    Article  Google Scholar 

  36. Xu, J., & Wang, C. (2014). Low-voltage high-linearity wideband current differencing transconductance amplifier and its application on current-mode active filter. Radio-engineering, 23(1), 512–522.

    MathSciNet  Google Scholar 

  37. Yucey, E., & Minaei, S. (2006). Full-wave rectifier realization using only two CCIIQs and NMOS transistors. Taylor & Francis International Journal of Electronics, 93(8), 533–541.

    Article  Google Scholar 

  38. Jaikla, W., & Siripruchyanun, M. (2008). A simple current-mode quadrature oscillator using single CDTA. Radioengineering, 17(4), 33–40.

    Google Scholar 

  39. Khan, A. A. (1995). An improved current-mode instrumentation amplifier with bandwidth independent of gain. IEEE Transacttons on Instrumentation and Measurement, 44(4), 887–891.

    Article  Google Scholar 

  40. Toumazou, C., Lidgcy, F. G., & Haigh, D. G. (1990). Analogue IC design: the current mode approach. London: Peter Peregrinus Ltd.

    Google Scholar 

  41. Sedra, A., & Smith, K. C. (1970). A second generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.

    Article  Google Scholar 

  42. Alzaher, H. A., Elwan, H., & Ismail, M. (2003). A CMOS fully balanced second-generation current conveyor. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 50(6), 278–287.

    Article  Google Scholar 

  43. Analog Devices. (1990). Linear products data book. Norwood, Massachusetts, USA: Analog Devices.

    Google Scholar 

  44. Chang, J. H., Kimb, N. S., & Mitra, S. K. (2005). Pitch estimation of speech signal based on adaptive lattice notch filter. Signal Processing, 85(3), 637–641.

    Article  Google Scholar 

  45. McNamara, D. M., Majo, J. P., & Ziarani, A. K. (2008). Elimination of power line interference on telephone cables under frequency-varying conditions. IEEE Transactions on Instrumentation and Measurement, 57(2), 321–331.

    Article  Google Scholar 

  46. Parsa, V. (2006). Acoustic feedback and its reduction through digital signal processing. The Hearing Journal, 59(11), 16–23.

    Article  Google Scholar 

  47. Baker, M. W., & Sarpeshkar, R. (2006). Low-power single-loop and dual-loop AGCs for bionic ears. IEEE Journal of Solid-State Circuits, 41(9), 1983–1996.

    Article  Google Scholar 

  48. Chua, E., & Fang, W. C. (2011). Mixed bio-signal lossless data compressor for portable brain–heart monitoring systems. IEEE Transactions on Consumer Electronics, 57(1), 267–273.

    Article  Google Scholar 

  49. Khateb, F., Khatib, N., Prommee, P., Jaikla, W., & Fujcik, L. (2013). Ultra-low voltage tunable transconductor based on bulk-driven quasi-floating-gate technique. Journal of Circuits, Systems, and Computers, 22(8), 1350073.

    Article  Google Scholar 

  50. Kumngern, M., Khateb, F., Dejhan, K., Phasukkit, P., & Tungjitkusolmun, S. (2013). Voltage-mode multifunction biquadratic filters using new ultra-low-power differential difference current conveyors. Radioengineering, 22(2), 448–457.

    Google Scholar 

  51. Khateb, F., Kumngern, M., Spyridon, V., & Psychalinos, C. (2014). Differential difference current conveyor using bulk-driven technique for ultra-low-voltage applications. Circuits, Systems and Signal Processing, 33(1), 159–176.

    Article  Google Scholar 

  52. Uygur, A., & Kuntman, H. (2013). DTMOS-based 0.4 V ultra low-voltage low-power VDTA design and its application to EEG data processing. Radioengineering, 22(2), 458–466.

    Google Scholar 

  53. Khateb, F., Kulej, T., & Kumnger, M. (2015). 0.5-V DTMOS median filter. AEU-International Journal of Electronics and Communications, 69(11), 1733–1736.

    Article  Google Scholar 

  54. Assaderaghi, F., Sinitsky, D., Parke, S. A., Bokor, J., Ko, P. K., & Hu, C. (1997). Dynamic threshold-voltage MOSFET for ultra-lowvoltage VLSI. IEEE Transactions on Electron Devices, 44(3), 414–422.

    Article  Google Scholar 

  55. Uygur, A., & Kuntman, H. (2014). A very compact, 0.4 V DTMOS CCII employed in an audio-frequency filter. Analog Integrated Circuits and Signal Processing, 81(1), 89–98.

    Article  Google Scholar 

  56. Horng, J., Lee, M., Cheng, H., & Chang, C. (1997). New CCII-based voltage-mode universal biquadratic filter. International Journal of Electronics, 82(2), 151–155.

    Article  Google Scholar 

  57. Alzaher, H. A., Tasadduq, N., & Mahnashi, Y. (2013). A highly linear fully integrated powerline filter for biopotential acquisition systems. IEEE Transactions on Biomedical Circuits and Systems, 7(5), 703–712.

    Article  Google Scholar 

  58. Mahmoud, S. A., Bamakhramah, A., & Al-Tunaiji, S. A. (2013). Low-noise low-pass filter for ECG portable detection systems with digitally programmable range. Circuits, Systems and Signal Processing, 32(5), 2029–2045.

    Article  MathSciNet  Google Scholar 

  59. Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology, 20(3), 45–50.

    Article  Google Scholar 

  60. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220 [Circulation Electronic Pages; http://circ.ahajournals.org/content/101/23/e215.full].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal K. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.K., Choubey, C.K. & Tiwari, G. Low power analog comb filter for biomedical applications. Analog Integr Circ Sig Process 97, 371–386 (2018). https://doi.org/10.1007/s10470-018-1329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1329-8

Keywords

Navigation