Skip to main content

Advertisement

Log in

Ambient RF energy harvesting system: a review on integrated circuit design

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive review of ambient RF energy harvester circuitry working on integrated circuits. The review covers 3 main blocks in an RF energy harvesting system implemented on chip. The blocks are the rectifier, impedance matching circuit and power management unit. The review of each block includes its operational principle, reported state-of-the-art circuit enhancement techniques, and design trade-offs. We compare the circuits in each block with respect to the techniques adopted to improve the performances for RF energy harvesting. To identify the benefits and limitations associated with the architecture we discuss the advantages and disadvantages of the circuit topologies in each block of an ambient RF energy harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Visser, H. J., & Vullers, R. J. M. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423.

    Google Scholar 

  2. Piñuela, M., Mitcheson, P. D., & Lucyszyn, S. (2013). Ambient RF energy harvesting in urban and semi-urban environments. IEEE Transactions on Microwave Theory and Techniques, 61(7), 2715–2726.

    Google Scholar 

  3. Vyas, R. J., Cook, B. B., Kawahara, Y., & Tentzeris, M. M. (2013). E-WEHP: A batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals. IEEE Transactions on Microwave Theory and Techniques, 61(6), 2491–2505.

    Google Scholar 

  4. Barroca, N., et al. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. In 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), London (pp. 532–537).

  5. Takhedmit, H. (2016). Ambient RF power harvesting: Application to remote supply of a batteryless temperature sensor. In 2016 IEEE international smart cities conference (ISC2), Trento (pp. 1–4).

  6. Mimis, K., Gibbins, D., Dumanli, S., & Watkins, G. T. (2015). Ambient RF energy harvesting trial in domestic settings. IET Microwaves, Antennas and Propagation, 9(5), 454–462.

    Google Scholar 

  7. Andrenko, A. S., Lin, X. & Zeng, M. (2015). Outdoor RF spectral survey: A roadmap for ambient RF energy harvesting. In TENCON 2015—2015 IEEE region 10 conference, Macao (pp. 1–4).

  8. Zhang, Y., et al. (2013). Batteryless 19 µW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE Journal of Solid-State Circuits, 48(1), 199–213.

    Google Scholar 

  9. Mansano, A. L., Li, Y., Bagga, S., & Serdijn, W. A. (2016). An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 µm CMOS. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 602–611.

    Google Scholar 

  10. Kim, Y. J., Bhamra, H. S., Joseph, J., & Irazoqui, P. P. (2015). An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(11), 1028–1032.

    Google Scholar 

  11. Rajavi, Y., Taghivand, M., Aggarwal, K., Ma, A., & Poon, A. S. Y. (2017). An RF-powered FDD radio for neural microimplants. IEEE Journal of Solid-State Circuits, 52(5), 1221–1229.

    Google Scholar 

  12. Liu, J., Xiong, K., Fan, P., & Zhong, Z. (2017). RF energy harvesting wireless powered sensor networks for smart cities. IEEE Access, 5, 9348–9358.

    Google Scholar 

  13. Kumar, A., & Hancke, G. P. (2014). An energy-efficient smart comfort sensing system based on the IEEE 1451 standard for green buildings. IEEE Sensors Journal, 14(12), 4245–4252.

    Google Scholar 

  14. Stoopman, M., Philips, K., & Serdijn, W. A. (2017). An RF-powered DLL-based 2.4-GHz transmitter for autonomous wireless sensor nodes. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2399–2408.

    Google Scholar 

  15. Papotto, G., Greco, N., Finocchiaro, A., Guerra, R., Leotta, S., & Palmisano, G. (2018). An RF-powered transceiver exploiting sample and hold operation on the received carrier. IEEE Transactions on Microwave Theory and Techniques, 66(1), 396–409.

    Google Scholar 

  16. Kang, J., Rao, S., Chiang, P., & Natarajan, A. (2016). Design and optimization of area-constrained wirelessly powered CMOS UWB SoC for localization applications. IEEE Transactions on Microwave Theory and Techniques, 64(4), 1042–1054.

    Google Scholar 

  17. Soyata, T., Copeland, L., & Heinzelman, W. (2016). RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine, 16(1), 22–57.

    Google Scholar 

  18. Kim, S., et al. (2014). Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649–1666.

    Google Scholar 

  19. Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Springer open Tran et al. Micro and Nano System Letters, 2017, 5–14.

    Google Scholar 

  20. Lee, S. Y., Hong, J. H., Hsieh, C. H., Liang, M. C., & Kung, J. Y. (2013). A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices. IEEE Transactions on Biomedical Circuits and Systems, 7(3), 256–265.

    Google Scholar 

  21. Hwang, Y. S., Hwang, B. H., Lin, H. C., & Chen, J. J. (2013). PLL-based contactless energy transfer analog FSK demodulator using high-efficiency rectifier. IEEE Transactions on Industrial Electronics, 60(1), 280–290.

    Google Scholar 

  22. Wu, C. Y., Qian, X. H., Cheng, M. S., Liang, Y. A., & Chen, W. M. (2014). A 13.56 MHz 40 mW CMOS high-efficiency inductive link power supply utilizing on-chip delay-compensated voltage doubler rectifier and multiple LDOs for implantable medical devices. IEEE Journal of Solid-State Circuits, 49(11), 2397–2407.

    Google Scholar 

  23. Lu, Y., & Ki, W. H. (2014). A 13.56 MHz CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems. IEEE Transactions on Biomedical Circuits and Systems, 8(3), 334–344.

    Google Scholar 

  24. Iguchi, S., Yeon, P., Fuketa, H., Ishida, K., Sakurai, T., & Takamiya, M. (2015). Wireless power transfer with zero-phase-difference capacitance control. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(4), 938–947.

    MathSciNet  Google Scholar 

  25. Li, X., Meng, X., Tsui, C. Y., & Ki, W. H. (2015). Reconfigurable resonant regulating rectifier with primary equalization for extended coupling- and loading-range in bio-implant wireless power transfer. IEEE Transactions on Biomedical Circuits and Systems, 9(6), 875–884.

    Google Scholar 

  26. Li, X., Tsui, C. Y., & Ki, W. H. (2015). A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. IEEE Journal of Solid-State Circuits, 50(4), 978–989.

    Google Scholar 

  27. Park, H. G., et al. (2016). A design of a wireless power receiving unit with a high-efficiency 6.78-MHz active rectifier using shared DLLs for magnetic-resonant A4 WP applications. IEEE Transactions on Power Electronics, 31(6), 4484–4498.

    Google Scholar 

  28. Kuo, N. C., Zhao, B., & Niknejad, A. M. (2018). Novel inductive wireless power transfer uplink utilizing rectifier third-order nonlinearity. IEEE Transactions on Microwave Theory and Techniques, 66(1), 319–331.

    Google Scholar 

  29. Kim, C., Ha, S., Park, J., Akinin, A., Mercier, P. P., & Cauwenberghs, G. (2017). A 144-MHz fully integrated resonant regulating rectifier with hybrid pulse modulation for mm-sized implants. IEEE Journal of Solid-State Circuits, 52(11), 3043–3055.

    Google Scholar 

  30. Cheng, L., Ki, W. H., & Tsui, C. Y. (2017). A 6.78-MHz single-stage wireless power receiver using a 3-mode reconfigurable resonant regulating rectifier. IEEE Journal of Solid-State Circuits, 52(5), 1412–1423.

    Google Scholar 

  31. Ghanad, M. A., Green, M. M., & Dehollain, C. (2017). A 30 µW remotely powered local temperature monitoring implantable system. IEEE Transactions on Biomedical Circuits and Systems, 11(1), 54–63.

    Google Scholar 

  32. Lu, Y., Huang, M., Cheng, L., Ki, W. H., U, S. P., & Martins, R. P. (2017). A dual-output wireless power transfer system with active rectifier and three-level operation. IEEE Transactions on Power Electronics, 32(2), 927–930.

    Google Scholar 

  33. Bai, X., Kong, Z. H., & Siek, L. (2017). A high-efficiency 6.78-MHz full active rectifier with adaptive time delay control for wireless power transmission. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(4), 1297–1306.

    Google Scholar 

  34. Moghaddam, A. K., Chuah, J. H., Ramiah, H., Ahmadian, J., Mak, P. I., & Martins, R. P. (2017). A 73.9%-efficiency CMOS rectifier using a lower DC feeding (LDCF) self-body-biasing technique for far-field RF energy-harvesting systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(4), 992–1002.

    Google Scholar 

  35. Pozar, D. M. (2012). Microwave engineering (4th ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  36. Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.

    Google Scholar 

  37. Karthaus, U., & Fischer, M. (2003). Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power. IEEE Journal of Solid-State Circuits, 38(10), 1602–1608.

    Google Scholar 

  38. Lu, Y., et al. (2017). A wide input range dual-path CMOS rectifier for RF energy harvesting. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(2), 166–170.

    Google Scholar 

  39. Dickson, J. F. (1976). On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE Journal of Solid-State Circuits, 11(3), 374–378.

    Google Scholar 

  40. Umeda, T., Yoshida, H., Sekine, S., Fujita, Y., Suzuki, T., & Otaka, S. (2006). A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE Journal of Solid-State Circuits, 41(1), 35–41.

    Google Scholar 

  41. Nakamoto, H., et al. (2006). A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology. IEEE Journal of Solid-State Circuits, 42(1), 101–110.

    MathSciNet  Google Scholar 

  42. Le, T., Mayaram, K., & Fiez, T. (2008). Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE Journal of Solid-State Circuits, 43(5), 1287–1302.

    Google Scholar 

  43. Papotto, G., Carrara, F., & Palmisano, G. (2011). A 90-nm CMOS threshold-compensated RF energy harvester. IEEE Journal of Solid-State Circuits, 46(9), 1985–1997.

    Google Scholar 

  44. Giannakas, G., Plessas, F., & Stamoulis, G. (2012). Pseudo-FG technique for efficient energy harvesting. Electronics Letters, 48(9), 522–523.

    Google Scholar 

  45. Scorcioni, S., Larcher, L., & Bertacchini, A. (2013). A reconfigurable differential CMOS RF energy scavenger with 60% peak efficiency and −21 dBm sensitivity. IEEE Microwave and Wireless Components Letters, 23(3), 155–157.

    Google Scholar 

  46. Mansano, A., Bagga, S., & Serdijn, W. (2013). A high efficiency orthogonally switching passive charge pump rectifier for energy harvesters. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(7), 1959–1966.

    Google Scholar 

  47. Xia, L., Cheng, J., Glover, N. E., & Chiang, P. (2014). 0.56 V, −20 dBm RF-powered, multi-node wireless body area network system-on-a-chip with harvesting-efficiency tracking loop. IEEE Journal of Solid-State Circuits, 49(6), 1345–1355.

    Google Scholar 

  48. Wang, Y. J., Liao, I. N., Tsai, C. H., & Pakasiri, C. (2014). A millimeter-wave in-phase gate-boosting rectifier. IEEE Transactions on Microwave Theory and Techniques, 62(11), 2768–2783.

    Google Scholar 

  49. Hameed, Z., & Moez, K. (2014). Hybrid forward and backward threshold-compensated RF-DC power converter for RF energy harvesting. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 4(3), 335–343.

    Google Scholar 

  50. Chouhan, S. S., & Halonen, K. (2015). Threshold voltage compensation scheme for RF-to-DC converter used in RFID applications. Electronics Letters, 51(12), 892–894.

    Google Scholar 

  51. Hameed, Z., & Moez, K. (2015). A 3.2 V −15 dBm adaptive threshold-voltage compensated RF energy harvester in 130 nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(4), 948–956.

    MathSciNet  Google Scholar 

  52. Gao, H., Matters-Kammerer, M., Harpe, P., & Baltus, P. (2016). A 50–60 GHz mm-wave rectifier with bulk voltage bias in 65-nm CMOS. IEEE Microwave and Wireless Components Letters, 26(8), 631–633.

    Google Scholar 

  53. Gharehbaghi, K., Zorlu, Ö., Koçer, F., & Külah, H. (2017). Threshold compensated UHF rectifier with local self-calibrator. IEEE Microwave and Wireless Components Letters, 27(6), 575–577.

    Google Scholar 

  54. Luo, Y. S., & Liu, S. I. (2017). A voltage multiplier with adaptive threshold voltage compensation. IEEE Journal of Solid-State Circuits, 52(8), 2208–2214.

    Google Scholar 

  55. Taghadosi, M., Albasha, L., Quadir, N., Rahama, Y. A., & Qaddoumi, N. (2017). High efficiency energy harvesters in 65 nm CMOS process for autonomous IoT sensor applications. IEEE Access, 99, 1.

    Google Scholar 

  56. Gharehbaghi, K., Koçer, F., & Külah, H. (2017). Optimization of power conversion efficiency in threshold self-compensated UHF rectifiers with charge conservation principle. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9), 2380–2387.

    Google Scholar 

  57. Razavi Haeri, A. A., Karkani, M. G., Sharifkhani, M., Kamarei, M., & Fotowat-Ahmady, A. (2017). Analysis and design of power harvesting circuits for ultra-low power applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(2), 471–479.

    Google Scholar 

  58. Gharehbaghi, K., Zorlu, Ö., Koçer, F., & Külah, H. (2016). Modelling and efficiency optimisation of UHF Dickson rectifiers. IET Circuits, Devices and Systems, 10(6), 504–513.

    Google Scholar 

  59. Oh, S. & Wentzloff, D. D. (2012). A −32dBm sensitivity RF power harvester in 130 nm CMOS. In 2012 IEEE radio frequency integrated circuits symposium, Montreal, QC (pp. 83–486).

  60. Mandal, S., & Sarpeshkar, R. (2007). Low-power CMOS rectifier design for RFID applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1177–1188.

    Google Scholar 

  61. Kotani, K., Sasaki, A., & Ito, T. (2009). High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE Journal of Solid-State Circuits, 44(11), 3011–3018.

    Google Scholar 

  62. Yoo, J., Yan, L., Lee, S., Kim, Y., & Yoo, H. J. (2011). A 5.2 mW self-configured wearable body sensor network controller and a 12 µW wirelessly powered sensor for a continuous health monitoring system. IEEE Journal of Solid-State Circuits, 45(1), 178–188.

    Google Scholar 

  63. Wei, P., et al. (2011). High-efficiency differential RF front-end for a Gen2 RFID tag. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(4), 189–194.

    Google Scholar 

  64. Reinisch, H., et al. (2011). A multifrequency passive sensing tag with on-chip temperature sensor and off-chip sensor interface using EPC HF and UHF RFID technology. IEEE Journal of Solid-State Circuits, 46(12), 3075–3088.

    MathSciNet  Google Scholar 

  65. Theilmann, P. T., Presti, C. D., Kelly, D. J., & Asbeck, P. M. (2012). A µW complementary bridge rectifier with near zero turn-on voltage in SOS CMOS for wireless power supplies. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(9), 2111–2124.

    MathSciNet  Google Scholar 

  66. Nguyen, T. T., Feng, T., Häfliger, P., & Chakrabartty, S. (2014). Hybrid CMOS rectifier based on synergistic RF-piezoelectric energy scavenging. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(12), 3330–3338.

    Google Scholar 

  67. Burasa, P., Constantin, N. G., & Wu, K. (2014). High-efficiency wideband rectifier for single-chip batteryless active millimeter-wave identification (MMID) tag in 65-nm bulk CMOS technology. IEEE Transactions on Microwave Theory and Techniques, 62(4), 1005–1011.

    Google Scholar 

  68. Chouhan, S. S., & Halonen, K. (2015). A novel cascading scheme to improve the performance of voltage multiplier circuits. Analog Integrated Circuits Signal Process, 84(2015), 373–381.

    Google Scholar 

  69. Ouda, M. H., Khalil, W., & Salama, K. N. (2016). Wide-range adaptive RF-to-DC power converter for UHF RFIDs. IEEE Microwave and Wireless Components Letters, 26(8), 634–636.

    Google Scholar 

  70. Ouda, M. H., Khalil, W., & Salama, K. N. (2017). Self-biased differential rectifier with enhanced dynamic range for wireless powering. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(5), 515–519.

    Google Scholar 

  71. Lau, W. W. Y. & Siek, L. (2017). 2.45 GHz wide input range CMOS rectifier for RF energy harvesting. In 2017 IEEE wireless power transfer conference (WPTC), Taipei (pp. 1–4).

  72. Lau, W. W. Y. & Siek, L. (2016). A 2.45 GHz CMOS rectifier for RF energy harvesting. In 2016 IEEE wireless power transfer conference (WPTC), Aveiro (pp. 1–3).

  73. Abouzied, M. A., & Sánchez-Sinencio, E. (2015). Low-input power-level CMOS RF energy-harvesting front end. IEEE Transactions on Microwave Theory and Techniques, 63(11), 3794–3805.

    Google Scholar 

  74. Razavi, B. (2017). Design of analog CMOS integrated circuit (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  75. Barnett, R. et al. (2007). A Passive UHF RFID transponder for EPC Gen 2 with −14dBm sensitivity in 0.13 μm CMOS. In 2007 IEEE international solid-state circuits conference. digest of technical papers, San Francisco, CA (pp. 582–623).

  76. Curty, J. P., Joehl, N., Krummenacher, F., Dehollain, C., & Declercq, M. J. (2005). A model for μ-power rectifier analysis and design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2771–2779.

    Google Scholar 

  77. Hameed, Z., & Moez, K. (2017). Design of impedance matching circuits for RF energy harvesting systems. Microelectronics Journal, 62(2017), 56–59.

    Google Scholar 

  78. Gosset, G., & Flandre, D. (2011). Fully-automated and portable design methodology for optimal sizing of energy-efficient CMOS voltage rectifiers. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(2), 141–149.

    Google Scholar 

  79. Haddad, P. A., Gosset, G., Raskin, J. P., & Flandre, D. (2011). Automated design of a 13.56 MHz 19 µW passive rectifier with 72% efficiency under 10 µA load. IEEE Journal of Solid-State Circuits, 51(5), 1290–1301.

    Google Scholar 

  80. Gharehbaghi, K., Koçer, F., & Külah, H. (2017). Optimization of power conversion efficiency in threshold self-compensated UHF rectifiers with charge conservation principle. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9), 2380–2387.

    Google Scholar 

  81. Soltani, N., & Yuan, F. (2010). A high-gain power-matching technique for efficient radio-frequency power harvest of passive wireless microsystems. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(10), 2685–2695.

    MathSciNet  Google Scholar 

  82. Stoopman, M., Keyrouz, S., Visser, H. J., Philips, K., & Serdijn, W. A. (2014). Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE Journal of Solid-State Circuits, 49(3), 622–634.

    Google Scholar 

  83. Shameli, A., Safarian, A., Rofougaran, A., Rofougaran, M., & De Flaviis, F. (2007). Power harvester design for passive UHF RFID tag using a voltage boosting technique. IEEE Transactions on Microwave Theory and Techniques, 55(6), 1089–1097.

    Google Scholar 

  84. De Vita, G., & Iannaccone, G. (2005). Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Transactions on Microwave Theory and Techniques, 53(9), 2978–2990.

    Google Scholar 

  85. Hsieh, P. H., Chou, C. H., & Chiang, T. (2015). An RF energy harvester with 44.1% PCE at input available power of −12 dBm. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(6), 1528–1537.

    MathSciNet  Google Scholar 

  86. Stoopman, M., Philips, K., & Serdijn, W. A. (2017). An RF-powered DLL-based 2.4-GHz transmitter for autonomous wireless sensor nodes. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2399–2408.

    Google Scholar 

  87. Abouzied, M. A., Ravichandran, K., & Sánchez-Sinencio, E. (2017). A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability. IEEE Journal of Solid-State Circuits, 52(3), 704–719.

    Google Scholar 

  88. Soltani, N., & Tuan, F. (2010). A step-up transformer impedance transformation technique for efficient power harvesting of passive transponders. Microelectronics Journal, 41(2010), 75–84.

    Google Scholar 

  89. Gonçalves, H., Martins, M., & Fernandes, J. (2015). Fully integrated energy harvesting circuit with −25-dBm sensitivity using transformer matching. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(5), 446–450.

    Google Scholar 

  90. Li, B., Shao, X., Shahshahan, N., Goldsman, N., Salter, T., & Metze, G. M. (2013). An antenna co-design dual band RF energy harvester. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(12), 3256–3266.

    Google Scholar 

  91. Li, C. H., Yu, M. C., & Lin, H. J. (2017). A compact 0.9-/2.6-GHz dual-band RF energy harvester using SiP technique. IEEE Microwave and Wireless Components Letters, 27(7), 666–668.

    Google Scholar 

  92. Yi, J., Ki, W. H., & Tsui, C. Y. (2007). Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(1), 153–166.

    Google Scholar 

  93. Li, C. J., & Lee, T. C. (2014). 2.4-GHz high-efficiency adaptive power. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 434–438.

    MathSciNet  Google Scholar 

  94. Safarian, Z., & Hashemi, H. (2014). Wirelessly powered passive systems with dynamic energy storage mechanism. IEEE Transactions on Microwave Theory and Techniques, 62(4), 1012–1021.

    Google Scholar 

  95. Reinisch, H., et al. (2011). An electro-magnetic energy harvesting system with 190 nW idle mode power consumption for a BAW based wireless sensor node. IEEE Journal of Solid-State Circuits, 46(7), 1728–1741.

    Google Scholar 

  96. Nariman, M., Shirinfar, F., Pamarti, S., Rofougaran, A., & De Flaviis, F. (2017). High-efficiency millimeter-wave energy-harvesting systems with milliwatt-level output power. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(6), 605–609.

    Google Scholar 

  97. Valenta, C. R., Morys, M. M., & Durgin, G. D. (2015). Theoretical energy-conversion efficiency for energy-harvesting circuits under power-optimized waveform excitation. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1758–1767.

    Google Scholar 

  98. Collado, A., & Georgiadis, A. (2014). Optimal waveforms for efficient wireless power transmission. IEEE Microwave and Wireless Components Letters, 24(5), 354–356.

    Google Scholar 

  99. Kuhn, V., Lahuec, C., Seguin, F., & Person, C. (2015). A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1768–1778.

    Google Scholar 

  100. Liu, Z., Zhong, Z., & Guo, Y. X. (2015). Enhanced dual-band ambient RF energy harvesting with ultra-wide power range. IEEE Microwave and Wireless Components Letters, 25(9), 630–632.

    Google Scholar 

  101. Lu, J. J., Yang, X. X., Mei, H., & Tan, C. (2016). A four-band rectifier with adaptive power for electromagnetic energy harvesting. IEEE Microwave and Wireless Components Letters, 26(10), 819–821.

    Google Scholar 

  102. Song, C., et al. (2016). A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Transactions on Antennas and Propagation, 64(7), 3160–3171.

    Google Scholar 

  103. Hsu, C. Y., Lin, S. C., & Tsai, Z. M. (2017). Quadband rectifier using resonant matching networks for enhanced harvesting capability. IEEE Microwave and Wireless Components Letters, 27(7), 669–671.

    Google Scholar 

  104. Shen, S., Chiu, C. Y., & Murch, R. D. (2017). A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas and Wireless Propagation Letters, 16, 3071–3074.

    Google Scholar 

  105. Colella, R., Pasca, M., Catarinucci, L., Tarricone, L., & D’Amico, S. (2016). High-sensitivity CMOS RF-DC converter in HF RFID band. IEEE Microwave and Wireless Components Letters, 26(9), 732–734.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Partnership Grant (RK001-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harikrishnan Ramiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, G., Ramiah, H., Yin, J. et al. Ambient RF energy harvesting system: a review on integrated circuit design. Analog Integr Circ Sig Process 97, 515–531 (2018). https://doi.org/10.1007/s10470-018-1320-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1320-4

Keywords

Navigation