Skip to main content
Log in

Design of high-linearity 75–90 GHz CMOS down-conversion mixer for automotive radar

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a 75–90 GHz down-conversion mixer applied in automotive radar, which is characterized with high linearity, low local oscillator (LO) drive as well as high conversion gain (CG) using TSMC 65-nm CMOS general-purpose technology. The good linearity and isolation of mixer are required for automotive radar to cover short-middle-far range detection. The mixer includes an enhanced double-balanced Gilbert-cell core with series peaking transmission line and source degeneration technique for improving linearity and CG, two on-chip baluns and intermediate frequency (IF) buffer for IF test. Besides, to make the design more accurate and efficient, the modeling and design of millimeter-wave (mm-wave) passive devices are introduced. The mixer consumes 12 mW under 1.5 V. The input 1 dB compression point (P1dB) is 2.5 dBm as well as IIP3 of 13.2 dBm at 80 GHz. High performances are achieved with the CG of 5 dB at 76 GHz with LO power of 0 dBm for frequencies of 75–90 GHz which covers the application of automotive radar frequency band (76–81 GHz) and LO-RF isolation of 33–37 dB for frequencies of 60–90 GHz. The area of the mixer is 0.14 mm2, with PADs included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hasch, J., Topak, E., Schnabel, R., Zwick, T., Weigel, R., & Waldschmidt, C. (2012). Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Microwave Theory and Techniques, 60(3SI2), 845–860.

    Article  Google Scholar 

  2. Trotta, S., Wintermantel, M., Dixon, J., Moeller, U., Jammers, R., Hauck, T., et al. (2012). An RCP packaged transceiver chipset for automotive LRR and SRR systems in SiGe BiCMOS technology. IEEE Microwave Theory and Techniques, 60(3SI2), 778–794.

    Article  Google Scholar 

  3. Razavi, B. (2009). Design of millimeter-wave CMOS radios: A tutorial. IEEE Circuits and Systems I-Regular Papers, 56(1), 4–16.

    Article  MathSciNet  Google Scholar 

  4. Viet, H. L., Hoa, T. D., Anh, T. H., Ta, C. M., Zhang, F., Evans, R. J., et al. (2013). A CMOS 77-GHz receiver front-end for automotive radar. IEEE Microwave Theory and Techniques, 61(10), 3783–3793.

    Article  Google Scholar 

  5. Lee, J., Li, Y., Hung, M., & Huang, S. (2010). A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE Journal of Solid-State Circuits, 45(12SI), 2746–2756.

    Article  Google Scholar 

  6. Guermandi, D., Shi, Q., Dewilde, A., Derudder, V., Ahmad, U., Spagnolo, A., et al. (2017). A 79-GHz 2x2 MIMO PMCW radar SoC in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 52(10), 2613–2626.

    Article  Google Scholar 

  7. Zhang, N., Xu, H., Wu, H., & Kenneth, K. O. (2009). W-band active down-conversion mixer in bulk CMOS. IEEE Microwave and Wireless Components Letters, 19(2), 98–100.

    Article  Google Scholar 

  8. Tsai, J. (2012). Design of 40-108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications. IEEE Microwave Theory and Techniques, 60(3SI2), 670–678.

    Article  Google Scholar 

  9. Lin, Y., Wang, C., & Liu, J. (2017). 94 GHz down-conversion mixer with gain enhanced Gilbert cell in 90 nm CMOS. Analog Integrated Circuits and Signal Processing, 93(1), 1–11.

    Article  Google Scholar 

  10. Lin, Y., Lan, K., Wang, C., Chi, C., & Lu, S. (2016). 6.3 mW 94 GHz CMOS down-conversion mixer with 11.6 dB gain and 54 dB LO-RF isolation. IEEE Microwave and Wireless Components Letters, 26(8), 604–606.

    Article  Google Scholar 

  11. Lin, Y., Lan, K., Lin, Y., Pan, H., Chen, C., & Wang, C. (2017). A 90-96 GHz CMOS down-conversion mixer with high conversion gain and excellent LO-RF isolation. In IEEE radio and wireless symposium (pp. 162–165).

  12. Zhu, F., Hong, W., Chen, J., Jiang, X., Wu, K., Yan, P., et al. (2014). A broadband low-power millimeter-wave CMOS downconversion mixer with improved linearity. IEEE Circuits and Systems II-Express Briefs, 61(3), 138–142.

    Article  Google Scholar 

  13. Lin, Y., Lan, K., Wang, C., & Li, G. (2017). Design and implementation of a 94 GHz CMOS down-conversion mixer with integrated miniature planar baluns for image radar sensors. Analog Integrated Circuits and Signal Processing, 91(3), 353–365.

    Article  Google Scholar 

  14. Kim, J., Kornegay, K. T., Alvarado, J., Jr., Lee, C. H., & Laskar, J. (2009). W-band double-balanced down-conversion mixer with Marchand baluns in silicon-germanium technology. Electronics Letters, 45(16), 841–843.

    Article  Google Scholar 

  15. Parlak, M., & Buckwalter, J. F. (2013). A passive I/Q millimeter-wave mixer and switch in 45-nm CMOS SOI. IEEE Microwave Theory and Techniques, 61(3SI), 1131–1139.

    Article  Google Scholar 

  16. Lu, H., Kuo, C., Lin, P., Tai, C., Chang, Y., Jiang, Y., et al. (2012). Flip-chip-assembled W-band CMOS chip modules on ceramic integrated passive device with transition compensation for millimeter-wave system-in-package integration. IEEE Microwave Theory and Techniques, 60(3SI2), 766–777.

    Article  Google Scholar 

  17. Chen, J., Kuo, C., Hsin, Y., & Wang, H. (2010). A 15–50 GHz broadband resistive FET ring mixer using 0.18-μm CMOS technology. In IEEE MTT-S international microwave symposium (pp. 784–787).

  18. Kuo, C., Kuo, C., Kuo, C., Maas, S. A., & Wang, H. (2008). Novel miniature and broadband millimeter-wave monolithic star mixers. IEEE Microwave Theory and Techniques, 56(4), 793–802.

    Article  Google Scholar 

  19. Chang, T., & Lin, J. (2006). 1–11 GHz ultra-wideband resistive ring mixer in 0.18-μm CMOS technology. In D. Ngo (Ed.), IEEE radio frequency integrated circuits symposium (p. 459).

  20. Jia, H., Kuang, L., Zhu, W., Wang, Z., Ma, F., Wang, Z., et al. (2016). A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar. IEEE Journal of Solid-State Circuits, 51(10), 2299–2311.

    Article  Google Scholar 

  21. Shi, J., Kang, K., Xiong, Y. Z., Brinkhoff, J., Lin, F., & Yuan, X. (2010). Millimeter-wave passives in 45-nm digital CMOS. IEEE Electron Device Letters, 31(10), 1080–1082.

    Article  Google Scholar 

  22. Hsieh, H., & Lu, L. (2007). Design of ultra-low-voltage RF frontends with complementary current-reused architectures. IEEE Microwave Theory, 55(7), 1445–1458. https://doi.org/10.1109/tmtt.2007.900208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Duan, Z., Huang, L. et al. Design of high-linearity 75–90 GHz CMOS down-conversion mixer for automotive radar. Analog Integr Circ Sig Process 97, 313–322 (2018). https://doi.org/10.1007/s10470-018-1247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1247-9

Keywords

Navigation