Skip to main content

Advertisement

Log in

Low power SAR ADC switching without the need of precise second reference

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper a simple method to reduce the switching energy of capacitive digital-to-analog converters (DACs) in low-power successive approximation register analog-to-digital converters (ADCs) is described. The method is based on the well-known monotonic switching procedure and the use of one intermediate voltage level during switching. Unlike most recently published switching methods the proposed method does not require the intermediate voltage to be accurate. The implementation of digital control and an intermediate voltage-level generator is considered. To evaluate the reduction in switching energy compared to the conventional monotonic switching procedure, the behavioral model of a 10-bit ADC was examined. The additional digital logic, voltage generator, and capacitive DAC were modeled at a transistor level using a 65 nm STM design kit. Simulation results and the subsequent power efficiency gains are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Murmann, B. (2016). ADC performance survey 1997–2016 [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.

  2. Lange, H., Schmale, S., Knoop, B., Peters-Drolshagen, D., & Paul, S. (2015). ADC topology based on compressed sensing for low power brain monitoring. Procedia Engineering, 120, 315–319.

    Article  Google Scholar 

  3. Atkin, E., Bulbakov, I., Ivanov, P., Ivanov, V., Malankin, E., Normanov, D., et al. (2016). Readout channel with majority logic timestamp and digital peak detector for Muon Chambers of the CBM experiment. Journal of Instrumentation, 11(12), C12069.

    Article  Google Scholar 

  4. Liu, C. C., Chang, S. J., Huang, G. Y., & Lin, Y. Z. (2010). A 10-bit 50-ms/s sar adc with a monotonic capacitor switching procedure. IEEE Journal of Solid-State Circuits, 45(4), 731740.

    Article  Google Scholar 

  5. Tong, X., & Ghovanloo, M. (2015). Energy-efficient switching scheme in SAR ADC for biomedical electronics. Electronics Letters, 51(9), 676678.

    Article  Google Scholar 

  6. Liang, Y., Zhu, Z., & Ding, R. (2015). SAR ADC architecture with 98.8% reduction in switching energy over conventional scheme. Analog Integrated Circuits and Signal Processing, 84(1), 8996. https://doi.org/10.1007/s10470-015-0539-6.

    Article  Google Scholar 

  7. Zhang, J., Ding, R., & Zhu, Z. (2016). 99.2% energy saving and high-linearity switching method for SAR ADCs. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-016-0895-x.

    Article  Google Scholar 

  8. Osipov, D., & Paul, S. (2016). Two advanced energy-back SAR ADC architectures with 99.21 and 99.37% reduction in switching energy. Analog Integrated Circuits and Signal Processing, 87(1), 8191. https://doi.org/10.1007/s10470-016-0707-3.

    Article  Google Scholar 

  9. Zhu, Z., & Liang, Y. (2015). A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18- μm CMOS for medical implant devices. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(9), 21672176.

    Article  Google Scholar 

  10. Lee, P. C., Lin, J. Y., & Hsieh, C. C. (2016). A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with input-range-adaptive switching. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(12), 21492157.

    Article  Google Scholar 

  11. Osipov, D., & Paul, S. (2016). Two-step reset method for energy-efficient SAR ADC switching schemes. Electronics Letters, 52(10), 816817.

    Article  Google Scholar 

  12. Osipov, D., & Paul, S. (2017). Two-step monotonic switching scheme for low-power SAR ADCs. In 2017 15th IEEE International New Circuits and Systems Conference (NEWCAS), June 2017, p. 205208.

  13. Osipov, D., & Paul, S. (2017). Low power SAR ADC with two-step switching scheme in 65 nm standard CMOS process. In 2017 IEEE 30th International Conference on Microelectronics (MIEL), Oct 2017, p. 209212.

  14. van Elzakker, M., van Tuijl, E., Geraedts, P., Schinkel, D., Klumperink, E. A. M., & Nauta, B. (2010). A 10-bit charge-redistribution adc consuming 1.9 W at 1 ms/s. IEEE Journal of Solid-State Circuits, 45(5), 10071015.

    Google Scholar 

  15. Mostov, P. M., Neuringer, J. L., & Rigney, D. S. (1961). Optimum capacitor charging efficiency for space systems. Proceedings of the IRE, 49(5), 941948.

    Article  Google Scholar 

  16. Paul, S., Schlaffer, A. M., & Nossek, J. A. (2000). Optimal charging of capacitors. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(7), 10091016.

    Article  Google Scholar 

  17. Yuan, C., & Lam, Y. (2012). Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electronics Letters, 48(9), 482483.

    Article  Google Scholar 

  18. Yuan, C., & Lam, Y. Y. H. (2013). A 281-nW 43.3 fJ/conversion-step 8-ENOB 25-kS/s asynchronous SAR ADC in 65 nm CMOS for biomedical applications. In 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), May 2013, p. 622625.

  19. Sanyal, A., & Sun, N. (2013). SAR ADC architecture with 98% reduction in switching energy over conventional scheme. Electronics Letters, 49(4), 248250.

    Article  Google Scholar 

  20. Tong, X., & Zhang, Y. (2015). 98.8% switching energy reduction in SAR ADC for bioelectronics application. Electronics Letters, 51(14), 10521054.

    Article  Google Scholar 

  21. Bai, W., & Zhu, Z. (2017). A 0.5-V 9.3-ENOB 68-nW 10-kS/s SAR ADC in 0.18-μm CMOS for biomedical applications. Microelectronics Journal, 59, 4046.

    Article  Google Scholar 

  22. Rui, M., Wenbin, B., & Zhangming, Z. (2015). An energy-efficient and highly linear switching capacitor procedure for SAR ADCs. Journal of Semiconductors, 36(5), 055014.

    Article  Google Scholar 

  23. Liu, M. M. (2006). Demystifying switched capacitor circuits. Oxford: Newnes.

    Google Scholar 

  24. Yue, X. (2013). Determining the reliable minimum unit capacitance for the DAC capacitor array of SAR ADCs. Microelectronics Journal, 44(6), 473478.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Osipov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, D., Paul, S. Low power SAR ADC switching without the need of precise second reference. Analog Integr Circ Sig Process 97, 417–425 (2018). https://doi.org/10.1007/s10470-018-1225-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1225-2

Keywords

Navigation