Skip to main content
Log in

A high-Q floating active inductor using 130 nm BiCMOS technology and its application in IF band pass filter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, the performance of floating active inductor is studied using 130 nm BiCMOS technology. A new design of floating type active inductor based on gyrator-C topology using MOSFETs and npn SiGe HBTs has been proposed. The quality factor, power consumption, noise figure, S11 and inductance value of the proposed design have been obtained and results are compared. The tradeoff between design parameters are discussed and optimal values of design components are found. The maximum value of quality factor obtained is 300 with inductive bandwidth of 0.32–2.65 GHz and power consumption of 269 µW. The design was also used in IF band pass filter for receiver applications and performance is studied in terms of gain, 1 dB compression point and IIP3. From the study, it has been observed that proposed floating type active inductor can be used in high performance RF applications compared to the applications that uses passive inductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yuan, F. (2008). CMOS active inductors and transformers: Principle, implementation, and applications, chap. 2. New York, US: Springer. ISBN 978-0-387-76477-1.

    Book  Google Scholar 

  2. Hsiao, C. C., Kuo, C. W., Ho, C. C., & Chan, Y. J. (2002). Improved quality-factor of 0.18 µm CMOS active inductor by a feedback resistance design. IEEE Microwave and Wireless Components Letters, 12(12), 467–469.

    Article  Google Scholar 

  3. Xiao, H., Schaumann, R., Daasch, W. R., Wong, P. K., & Pejcinovic, B. (2004). A radio-frequency CMOS active inductor and its application in designing high-Q filters. In IEEE proceedings of the international symposium on circuits and systems (pp. 197–200).

  4. Kia, H. B. (2014). Adaptive CMOS LNA using highly tunable active inductor. In IEEE 22nd Iranian conference on electrical engineering (ICEE) (pp. 1–6).

  5. Kia, H. B., A’ain, A. K., Grout, I., & Kamisian, I. (2013). A reconfigurable low-noise amplifier using a tunable active inductor for multistandard receivers. Circuits, Systems, and Signal Processing, 32(3), 979–992.

    Article  Google Scholar 

  6. Cheng, K. H., Hung, C. L., Gong, C. S. A., Liu, J. C., Jiang, B. Q., & Sun, S. Y. (2014). A 0.9-to 8-GHz VCO with a differential active inductor for multistandard wireline SerDes. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(8), 559–563.

    Article  Google Scholar 

  7. Krishnamurthy, S. V., El-Sankary, K., & El-Masry, E. (2010). Noise-cancelling CMOS active inductor and its application in RF band-pass filter design. International Journal of Microwave Science and Technology, 2010, 1–8.

    Article  Google Scholar 

  8. Heydarzadeh, S., & Torkzadeh, P. (2013). 1 GHz CMOS bandpass filter design using an active inductor and capacitor. American Journal of Electrical and Electronics Engineering, 1, 37–41.

    Article  Google Scholar 

  9. Liang, K. H., Ho, C. C., Kuo, C. W., & Chan, Y. J. (2005). CMOS RF band-pass filter design using the high quality active inductor. IEICE Transactions on Electronics, E88-C, 2372–2375.

    Article  Google Scholar 

  10. Choi, Y. W., & Luong, H. C. (2001). A high-Q and wide-dynamic-range 70-MHz CMOS bandpass filter for wireless receivers. IEEE Transactions on Circuits and System II: Analog and Digital Signal Processing, 48(5), 433–440.

    Article  Google Scholar 

  11. Wu, Y., Ding, X., Ismail, M., & Olsson, H. (2003). RF band pass filter design based on active inductors. IEEE Transactions on Circuits and Systems II, 50(12), 942–949.

    Article  Google Scholar 

  12. Kumar, V., Mehra, R., Majumder, D., Khanna, S., Prasad, S., & Islam, A. (2018). Process and voltage variation-aware design and analysis of active grounded inductor-based bandpass filter. In P. K. Sa, M. N. Sahoo, M. Murugappan, Y. Wu, & B. Majhi (Eds.), Progress in intelligent computing techniques: Theory, practice, and applications (pp. 309–315). Singapore: Springer. ISBN 978-981-10-3372-8.

    Chapter  Google Scholar 

  13. Pantoli, L., Stornelli, V., & Leuzzi, G. (2016). A low-voltage low-power 0.25 µm integrated single transistor active inductor-based filter. Analog Integrated Circuits and Signal Processing, 87(3), 463–469.

    Article  Google Scholar 

  14. Fu-Tian, L., Datao, G., Suen, H., Chonghan, L., Tiankuan, L., Da-Shung, S., et al. (2013). Active inductor shunt peaking in high-speed VCSEL driver design. Chinese Physics C, 37(11), 116101.

    Article  Google Scholar 

  15. Thanachayanont, A., & Payne, A. (2000). CMOS floating active inductor and its applications to bandpass filter and oscillator designs. IEE Proceedings Circuits, Devices and Systems, 147(1), 42–48.

    Article  Google Scholar 

  16. Kumar, R., Sachan, D., Yadav, S. S., Sihara, A. K., & Misra P. K. (2017). Design of active inductor at 2.4 GHz frequency using 180 nm CMOS technology. In International conference on electrical, computer and electronics (UPCON), IEEE Uttar Pradesh Section, India.

  17. Zito, D., Pepe, D., & Fonte, A. (2015). High-frequency CMOS active inductor: Design methodology and noise analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(6), 1123–1136.

    Article  Google Scholar 

  18. Van Der Ziel, A. (1986). Noise in solid state devices and circuits. New York: Wiley. ISBN 0471832340.

    Google Scholar 

  19. Wilamowski, B. M., & Erwin, J. D. (2011). Fundamentals of industrial electronics, chap. 11 (2nd ed.). Boca Raton: CRC Press, Taylor and Francis Group. ISBN 9781138074392.

    Google Scholar 

  20. Liu, W., & Hu, C. (2011). BSIM4 and MOSFET modeling For IC simulation. Singapore: World Scientific. ISBN 978-981-256-863-2.

    Book  Google Scholar 

  21. Galup-Montoro, C., & Schneider, M. C. (2007). MOSFET modeling for circuit analysis and design. Singapore: World Scientific. ISBN 978-981-256-810-6.

    Book  Google Scholar 

  22. Lai, Q. T., & Mao, J. F. (2010). A new floating active inductor using resistive feedback technique. In IEEE MTT-S international microwave symposium digest (MTT), Anaheim, CA (pp. 1748–1751).

  23. Branchi, P., Pantoli, L., Stornelli, V., & Leuzzi, G. (2015). RF and microwave high-Q floating active inductor design and implementation. International Journal of Circuit Theory and Applications, 43, 1095–1104.

    Article  Google Scholar 

  24. Momen, H. G., Yazgi, M., Kopru, R., & Saatlo, A. N. (2016). Design of a new low loss fully CMOS tunable floating active inductor. Analog Integrated Circuits and Signal Processing, 89(3), 727–737.

    Article  Google Scholar 

  25. Ahmed, A., & Wight, J. (2010). 6.7 GHz high-Q active inductor design using parasitic cancellation with process variation control. Electronics Letters, 46(7), 486–487.

    Article  Google Scholar 

  26. Crols, J., & Steyaert, M. S. J. (1998). Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Transactions on Circuit and Systems-II: Analog and Digital Signal Processing, 45(3), 269–282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divyesh Sachan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachan, D., Goswami, M. & Misra, P.K. A high-Q floating active inductor using 130 nm BiCMOS technology and its application in IF band pass filter. Analog Integr Circ Sig Process 96, 385–393 (2018). https://doi.org/10.1007/s10470-018-1196-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1196-3

Keywords

Navigation