Skip to main content
Log in

Concurrent dual-band Doherty power amplifier using a novel dual-band bandpass filter for wireless technologies

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel design methodology for dual-band Doherty power amplifier (DPA) with a novel dual-band bandpass filter and quad-section stepped impedance resonators. This design rejects the annoying frequencies of the second and third harmonics in the dual-band and contributes greatly to efficiency improvement of DPA. The methodology is validated with the design, simulation, implementation and experimentation of a 10 W GaN-based DPA for global system for mobile communications and worldwide interoperability for microwave access (WiMAX) applications at 1.84 GHz and 3.5 GHz, respectively. In the measurement results, the DPA achieves a drain efficiency (DE) of 55.5% with an output power of 38.2 dBm and power gain is 16.2 dB at the 6.1 dB output power back-off (OBO) from a saturated output power at 1.84 GHz. Furthermore, the DPA achieves a DE of 46.2% with an output power of 36.15 dBm, and power gain is 10 dB at the 6.1 dB OBO at 3.5 GHz. Using a10-MHz 16-QAM signal at 1.84 GHz and a 5-MHz WiMAX signal at 3.5 GHz, the linearity results show an adjacent channel leakage ratio of − 46.9 and − 44.3 dBc with the average output power of 37.6 and 36.1 dBm at 1.84 and 3.5 GHz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Carrubba, V., Maroldt, S., Muber, M., Walcher, H., Van Raay, F., Quay, R., et al. (2014). Realization of a 30-W highly efficient and linear reconfigurable dual-band power amplifier using the continuous mode approach. International Journal of Microwave and Wireless Technologies, 6(2), 115–128.

    Article  Google Scholar 

  2. Zheng, X., Liu, Y., Yu, C., Li, S., & Li, J. (2014). Design of a dual-band Doherty power amplifier utilizing simplified phase offset-lines. Progress In Electromagnetics Research C, 48, 21–28.

    Article  Google Scholar 

  3. Li, X., Chen, W., Zhang, Z., Feng, Z., Tang, X., & Mouthaan, K. (2010). A concurrent dual-band Doherty power amplifier. In IEEE Microwave Conference Proceedings (APMC), pp. 654–657.

  4. Rawat, K., & Ghannouchi, F. M. (2012). Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines. IEEE Transactions on Industrial Electronics, 59(12), 4831–4842.

    Article  Google Scholar 

  5. Saad, P., Colantonio, P., Piazzon, L., Giannini, F., Andersson, K., & Fager, C. (2012). Design of a concurrent dual-band 1.8–2.4-GHz GaN-HEMT Doherty power amplifier. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1840–1849.

    Article  Google Scholar 

  6. Carneiro, M. L., Eric, Ke, & Didier, Be. (2015). Fully integrated Doherty power amplifier in CMOS 65 nm with constant PAE in Backoff. Analog Integrated Circuits and Signal Processing, 82(1), 89–97.

    Article  Google Scholar 

  7. Fang, X.-H., & Cheng, K.-K. M. (2015). Improving power utilization factor of broadband Doherty amplifier by using bandpass auxiliary transformer. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2811–2820.

    Article  Google Scholar 

  8. Kalyan, R., Rawat, K., & Koul, S. K. (2015). Design strategy of concurrent multi-band Doherty power amplifier. IET Microwaves, Antennas & Propagation., 9(12), 1322–1329.

    Article  Google Scholar 

  9. Kalyan, R., Rawat, K., & Koul, S. K. (2017). Reconfigurable and concurrent dual-band Doherty power amplifier for multiband and multistandard applications. IEEE Transactions on Microwave Theory and Techniques, 65(1), 198–208.

    Article  Google Scholar 

  10. Li, X., Helaoui, M., Ghannouchi, F., & Chen, W. (2016). A quad-band Doherty power amplifier based on t-section coupled lines. IEEE Microwave and Wireless Components Letters, 26(6), 437–439.

    Article  Google Scholar 

  11. Liu, M. (2017). Concurrent dual-band Doherty power amplifiers for carrier aggregation. Master’s thesis, University of Waterloo.

  12. Gao, S. (2006). High-efficiency class-F RF/microwave power amplifiers. IEEE Microwave Magazine, 7(1), 40–48.

    Article  MathSciNet  Google Scholar 

  13. Raab, F. H. (1997). Class F power amplifiers with maximally flat waveforms. IEEE Transactions on Microwave Theory and Techniques, 45(11), 2007–2012.

    Article  Google Scholar 

  14. Colantonio, P., Giannini, F., GiofrE, R., & Piazzon, L. (2010). The Doherty power amplifier. International Journal of Microwave and Optical Technology, 5(6), 419–430.

    Google Scholar 

  15. Barakat, A., Thian, M., & Fusco, V. (2018). A high-efficiency GaN Doherty power amplifier with blended class-EF mode and load-pull technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(2), 151–155.

    Article  Google Scholar 

  16. Cho, M., Seo, M., Kim, H., & Jung, I. (2012). Doherty power amplifier based on the class-F load network. International Technical Conference on Circuits/Systems, Computers and Communications, 16, 15–23.

    Google Scholar 

  17. Lee, Y.-S., Lee, M.-W., & Jeong, Y.-H. (2008). Highly efficient class-F GaN HEMT Doherty amplifier for WCDMA applications. Microwave and Optical Technology Letters, 50(9), 2328–2331.

    Article  Google Scholar 

  18. Dai, Z., He, S., Peng, J., Pang, J., Hao, P., & Huang, C. (2017). Co-design of two-way Doherty power amplifier and filter for concurrent dual-band application. Microwave and Optical Technology Letters, 59(3), 530–533.

    Article  Google Scholar 

  19. Tang, C., Fan, Y., & Song, K. (2016). A dual-band unequal power divider with flexible choice of implementation. International Journal of Microwave and Wireless Technologies, 8(2), 171–178.

    Article  Google Scholar 

  20. Muraguchi, M., Yukitake, T., & Naito, Y. (1983). Optimum design of 3-dB branch-line couplers using microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 31(8), 674–678.

    Article  Google Scholar 

  21. Martin-Guerrero, T., Ducatteau, D., Camacho-Penalosa, C., & Gaquiere, C. (2009). GaN devices for power amplifier design. International Journal of Microwave and Wireless Technologies, 1(2), 137–143.

    Article  Google Scholar 

  22. Chiu, L. (2014). Wideband microstrip 90° hybrid coupler using high pass network. International Journal of Microwave Science and Technology. https://doi.org/10.1155/2014/854346.

    Google Scholar 

  23. Saad, B. M., Rahim, K. A., & Dewan, R. (2013). Compact wide-band branch-line coupler with meander line, cross and two-step stubs. Microwave and Optical Technology Letters, 55(8), 1810–1815.

    Article  Google Scholar 

  24. Bemani, M., & Nikmehr, S. (2016). Dual-band 3-way power divider and combiner based on CRLH-TLs. International Journal of Microwave and Wireless Technologies, 8(7), 1037–1043.

    Article  Google Scholar 

  25. Cheng, K. K., & Wong, F. L. (2004). A novel approach to the design and implementation of dual-band compact planar 90° branch-line coupler. IEEE Transactions on Microwave Theory and Techniques, 52(11), 2458–2463.

    Article  Google Scholar 

  26. Chen, W., Bassam, S. A., Li, X., Liu, Y., Rawat, K., Helaoui, M., et al. (2011). Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges. IEEE Transactions on Microwave Theory and Techniques, 59(10), 2537–2546.

    Article  Google Scholar 

  27. Hong, J. S., & Lancaster, M. J. (2001). Microstrip filters for RF/microwave applications. New York: John Wiley & Sons Inc.

    Book  Google Scholar 

  28. Cidronali, A., Magrini, I., Giovannelli, N., Mercanti, M., & Manes, G. (2009). Experimental system level analysis of a concurrent dual-band power amplifier for WiMAX and WCDMA applications. International Journal of Microwave and Wireless Technologies, 1(2), 99–107.

    Article  Google Scholar 

  29. Giannini, F., Sorrentino, R., & Vrba, J. (1984). Planar circuit analysis of microstrip radial stub. IEEE Transactions on Microwave Theory and Techniques, 32, 1652–1655.

    Article  Google Scholar 

  30. Rezaei Borjlu, S. H., Asemani, D., & Dousti, M. (2017). A highly efficient concurrent dual-band GaN class-AB power amplifier at 1.84 GHz and 3.5 GHz. International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.21148.

    Google Scholar 

  31. Kim, J., & Konstantinou, K. (2001). Digital predistortion of wideband signals based on power amplifier model with memory. Electronics Letters, 37(23), 1417–1418.

    Article  Google Scholar 

  32. Giannini, F., Sorrentino, R., & Vrba, J. (1984). Planar circuit analysis of microstrip radial stub (short paper). IEEE Transactions on Microwave Theory and Techniques, 32(12), 1652–1655.

    Article  Google Scholar 

  33. Li, Y., Cheang, C. F., Mak, P. I., & Martins, R. P. (2016). Joint-digital-predistortion for wireless transmitter’s I/Q imbalance and PA nonlinearities using an asymmetrical complexity-reduced Volterra series model. Analog Integrated Circuits and Signal Processing, 87(1), 35–47.

    Article  Google Scholar 

  34. Moazzen, Ha, Mohammadi, Ab, & Mirzavand, Ra. (2017). Multilevel outphasing system using six-port modulators and Doherty power amplifiers. Analog Integrated Circuits and Signal Processing, 90(2), 361–372.

    Article  Google Scholar 

  35. Grebennikov, A., & Wong, J. (2012). A dual-band parallel Doherty power amplifier for wireless applications. IEEE Transactions on Microwave Theory and Techniques, 60(10), 3214–3222.

    Article  Google Scholar 

  36. Chen, W., Zhang, S., Liu, Y., & Ghannouchi, F. M. (2013). A concurrent dual-band uneven Doherty power amplifier with frequency-dependent input power division. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(2), 552–561.

    Article  Google Scholar 

  37. Ren, H., Shao, J., & Zhou, M., et al. (2016). Design of a dual-band sequential power amplifier. In IEEE (PAWR2016), pp. 33–35.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Dousti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Borjlu, S., Dousti, M. & Asemani, D. Concurrent dual-band Doherty power amplifier using a novel dual-band bandpass filter for wireless technologies. Analog Integr Circ Sig Process 96, 395–408 (2018). https://doi.org/10.1007/s10470-018-1187-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1187-4

Keywords

Navigation