Skip to main content
Log in

A fully integrated 4-channel GMR biochip for biomedical detection applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposed a fully integrated 4-channel GMR biochip for biomedical detection assays, including the acquisition analog frontend for small signal extraction, 180° phase shifter, resistor ladder and control circuits for carrier cancellation, and amplifiers. Besides, the overall system was evaluated comprehensively by experiment, and the output noise is as low as \(321.7\mathrm {nV/\sqrt{Hz}},\) which is lower than the signal produced by one single 500nm magnetic particle during the detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang, H., Chen, Y., Hassibi, A., Scherer, A., & Hajimiri, A. (2009). A frequency-shift CMOS magnetic biosensor array with signle-bead sensitibity and no external magnet. In ISSCC digest of technical papers (pp. 438–439).

  2. Thewes, R. (2007). CMOS chips for bio molecule sensing purposes. In International workshop on advances sensors interface (pp. 1–6).

  3. Augustyniak, M., Paulus, C., Brederlow, R., Persike, N., Hartwich, G., Schmitt-Landsiedel, D., et al. (2006). A \(24\times 16\) CMOS-based chronocoulometric DNA microarray. In ISSCC digest on technical papers (pp. 59–68).

  4. Manickam, A., Chevalier, A., McDermott, M., Ellington, A. D., & Hassibi, A. (2010). A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Transactions on Biomedical Circuits and Systems, 4(6), 379–390.

    Article  Google Scholar 

  5. Lei, Z., He, X., Wang, Y., & Yu, Z. (2011). A fully integrated CMOS nanoscale biosensor microarray. In Proceedings of IEEE CICC (pp. 1–4).

  6. Wang, Z., Miao, J., Xu, T., Yu, L., Li, C. M., & Chen, X. (2008). Biosensors based on flexural mode piezo-diaphragm. In Proceedings of IEEE NEMS (pp. 374–378).

  7. Chien, J. C., Anwar, M., Yeh, E. C., Lee, L. P., & Niknejad, A. M. (2014). A 6.5/17.5-GHz dual-channel interferometer-based capacitive sensor in 65-nm CMOS for high-speed flow cytometry. In Proceedings of IEEE MTT-S (pp. 1–4).

  8. Lequin, R. M. (2005). Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry, 51(12), 2415–2418.

    Article  Google Scholar 

  9. Griffin, J. F. T., Spittle, E., Rodgers, C. R., Liggett, S., Cooper, M., Bakker, D., et al. (2005). Immunoglobulin G1 enzyme-linked immunosorbent assay for diagnosis of Johne’s disease in red deer (Cervus elaphus). Clinical Diagnostic Laboratory Immunology, 12(12), 1401–1409.

    Google Scholar 

  10. Weiss, S. (1999). Fluorescence spectroscopy of single biomolecules. Science, 283(5408), 1676–1683.

    Article  Google Scholar 

  11. Shen, W., Liu, X., Mazumdar, D., & Xiao, G. (2005). In situ detection of signle micron-sized magnetic beads using magnetic tunnel juction sensors. Applied Physics Letters, 86(25), 253901.

    Article  Google Scholar 

  12. Grancharov, S. G., Zeng, H., Sun, S., Wang, S. X., O’Brien, S., Murray, C. B., et al. (2005). Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. Journal of Physical Chemistry B, 109(26), 13030–13035.

    Article  Google Scholar 

  13. Kumagai, Y., Togawa, K., Sakamoto, S., Abe, M., Handa, H., & Sandhu, A. (2006). Hall biosensor with integrated current microstrips for control of magnetic beads. IEEE Transactions on Magnetics, 42, 3893–3895.

    Article  Google Scholar 

  14. Aytur, T., Foley, J., Anwar, M., Boser, B., Harris, E., & Beatty, P. R. (2006). A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. Journal of Immunological Methods, 314(1–2), 21–29.

    Article  Google Scholar 

  15. Koets, M., van der Wijk, T., van Eemerena, J. T. W. M., van Amerongenb, A., & Prinsa, M. W. J. (2009). Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosensors and Bioelectronics, 24(7), 1893–1898.

    Article  Google Scholar 

  16. de Boer, B. M., Kahlman, J. A. H. M., Jansen, T. P. G. H., Duric, H., & Veen, J. (2007). An integrated and sensitive detection platform for magneto-resistive biosensors. Biosensors and Bioelectronics, 22(9), 2366–2370.

    Article  Google Scholar 

  17. Djamal, M., Ramli, Y., & Khairurrijal, S. (2009). Giant magnetoresistance material and its potential for biosensor applications. In ICICI-BME (pp. 1–6).

  18. Hall, D. A., Wang, S. X., & Murmann, B. (2010). Portable biomarker detection with magnetic nanotags. In Proceedings of IEEE ISCAS (pp. 1779–1782).

  19. Li, G., Sun, S., Wilson, R. J., White, R. L., Pourmand, N., & Wang, S. X. (2006). Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sensors and Actuators A, 126(1), 98–106.

    Article  Google Scholar 

  20. Rife, J. C., Miller, M. M., Sheehan, P. E., Tamanaha, C. R., Tondra, M., & Whitman, L. J. (2003). Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sensors and Actuators A, 107(3), 209–218.

    Article  Google Scholar 

  21. Millen, R. L., Nordling, J., Bullen, H. A., & Porter, M. D. (2008). Giant magenetoresistive sensors. 2. Detection of biorecognition events at self-referencing and magnetically tagged arrays. Analytical Chemistry, 80(21), 7940–7946.

    Article  Google Scholar 

  22. Zhang, L., Zhu, C., Geng, J., Shi, X., Gao, Y., Chang, Z., & Qian, H. (2015). Silicon-based integrated microarray biochips for biosensing and biodetection applications. In T. Rinken (Ed.),Biosensors-micro and nanoscale application. InTech. https://doi.org/10.5772/60441.

  23. Zhu, C., Zhang, L., Shi, X., Gao, Y., & Qian, H. (2014). A GMR biosensing system with sub-50 ppm sensitivity. In Proceedings of IEEE EDSSC (pp. 1–2).

  24. Hall, D. A., Gaster, R. S., Osterfeld, S. J., Murmann, B., & Wang, S. X. (2010). GMR biosensor arrays: Correction techniques for reproducibility and enhanced sensitivity. Biosensors and Bioelectronics, 25(9), 2177–2181.

    Article  Google Scholar 

  25. Puscasu, R., Brinzoi, P., Creosteanu, L., & Brezeanu, G. (2015). A low voltage operational amplifier cell with extended input common mode range for high voltage current sensing applications. In PRIME (pp. 5–8).

  26. Johnson, B., DeTomaso, D., & Molnar, A. (2010). A low-power orthogonal current-reuse amplifier for parallel sensing applications. In ESSCIRC (pp. 318–321).

  27. Hall, D. A., Gaster, R. S., Makinwa, K. A. A., Wang, S. X., & Murmann, B. (2013). A 256 pixel magnetoresistive biosensor microarray in \(0.18\mu m\) CMOS. IEEE Journal of Solid-State Circuits, 48(5), 1290–1301.

    Article  Google Scholar 

  28. Wang, H. (2013). Magnetic sensors for diagnostic medicine: CMOS-based magnetic particle detectors for medical diagnosis applications. Microwave Magazine, 14(5), 110–130.

    Article  Google Scholar 

  29. Skucha, K., Gambini, S., Liu, P., Megens, M., Kim, J., & Boser, B. E. (2013). Design considerations for CMOS-integrated hall-effect magnetic bead detectors for biosensor applications. Journal of Microelectromechanical Systems, 22(6), 1327–1338.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Keysight Technologies for instruments and measurement supports. This work is supported by National Natural Science Foundation of China under Grant 61101001, 61204026 and 61674087, and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhang, L., Shi, X. et al. A fully integrated 4-channel GMR biochip for biomedical detection applications. Analog Integr Circ Sig Process 95, 513–521 (2018). https://doi.org/10.1007/s10470-018-1154-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1154-0

Keywords

Navigation