Skip to main content
Log in

Ultra-low-power bulk-driven fully differential subthreshold OTAs with partial positive feedback for Gm-C filters

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

A Correction to this article was published on 09 February 2018

This article has been updated

Abstract

This paper presents an ultra-low-power, bulk-driven, source-degenerated fully differential transconductor (FD-OTA), operating in subthreshold region. The source-degeneration (SD) and bulk-drive ensure linearity and rail-to-rail input swing. The flipped voltage follower and SD resistor perform V–I conversion in input core with power efficient class AB mode of operation. The reduction in open loop gain and gain bandwidth (GBW) of bulk-drive is compensated by applying partial positive feedback at diode connected MOSFET pair. The current gain from input core to output load side is set (1:1) in OTA1 and (1:4) in OTA2. The OTA2 offers increased transconductance and GBW whereas self-cascode load increases the output impedance and overall gain of the FD-OTAs. Both the input core and common source self-cascode load operate in class AB mode so these FD-OTAs provide enhanced slew rates. These OTAs have been employed to implement Biquadratic low-frequency Gm-C filter suitable for bio-signal applications. The proposed OTA2 has used dual supply voltage of ± 0.3 V and dissipates around 70 nW power and provides 62 dB FD-open loop gain with GBW of 7.73 kHz while driving the FD-load of 2 × 15 pF. The Cadence VIRTUOSO environment using UMC 0.18 µm CMOS process technology has been used to simulate the proposed circuit. The Simulation results verified fully differential total harmonic distortion of − 72 dB, for 1.2 Vp–p signal at 200 Hz frequency in unity gain configuration with resistive degeneration of 1 MΩ for OTA1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Change history

  • 09 February 2018

    The original version of this article unfortunately contained a mistake. The presentation of Fig. 3 was incorrect. The correct version of Fig. 3 is given.

References

  1. Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2007). An ultra-low-voltage ultra-low-power CMOS Miller OTA with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(10), 843–847.

    Article  Google Scholar 

  2. Cotrim, E. D. C., & de Ferreira, L. H. C. (2012). An ultra-low-power CMOS symmetrical OTA for low-frequency Gm-C applications. Analog Integrated Circuits and Signal Processing, 71(2), 275–282.

    Article  Google Scholar 

  3. Akbary, M., Nazari, M., Leila, S., & Omid, H. (2015). Improving power efficiency of a two stage operational amplifier for biomedical applications. Analog Integrated Circuits and Signal Processing, 84(2), 173–183.

    Article  Google Scholar 

  4. Guzinski, A., Bialko, M., & Matheau, J. C. (1987). Body driven differential amplifier for application in continuous-time active-C filter. In Proceedings of the European conference on circuit theory and design (ECCTD) (pp. 315–320).

  5. Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1–V op amps using standard digital CMOS technology. IEEE Transactions on Circuit and System II: Analog Digital Signal Processing, 45(7), 769–780.

    Article  Google Scholar 

  6. Zhang, X., & El-Masry, E. I. (2007). A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1204–1212.

    Article  Google Scholar 

  7. Khateb, F., & Biolek, D. (2011). Bulk-driven current differencing transconductance amplifier. Circuits, Systems, and Signal Processing, 30(5), 1071–1089.

    Article  Google Scholar 

  8. Zuo, L., & Islam, S. K. (2013). Low-voltage bulk-driven operational amplifier with improved transconductance. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(8), 2084–2091.

    Article  Google Scholar 

  9. Raikos, G., & Vlassis, S. (2010). 0.8 V bulk-driven operational amplifier. Analog Integrated Circuits and Signal Processing, 63(3), 425–432.

    Article  Google Scholar 

  10. Raikos, G., & Vlassis, S. (2011). Low-voltage bulk-driven input stage with improved transconductance. International Journal of Circuit Theory and Applications, 39(3), 327–339.

    Article  Google Scholar 

  11. Wang, R., & Harajani, R. (1995). Partial posistive feedback for gain enhancement of CMOS OTAs. Analog Integrated Circuits and Signal Processing, 8, 21–35.

    Article  Google Scholar 

  12. Kulej, T. (1999). Low-voltage CMOS transconductance amplifier controlled from body terminals. Bulletin of the Polish Academy of Sciences Technical Sciences, 47(3), 255–261.

    Google Scholar 

  13. Carrillo, J. M., Torelli, G., Aloe, R. P., & Carrillo, J. D. (2007). 1–V rail-to-rail CMOS opamp with improved bulk-driven input stage. IEEE Journal of Solid-State Circuits, 42(3), 508–517.

    Article  Google Scholar 

  14. Carrillo, J. M., Torelli, G., & Carrillo, J. F. D. (2011). Transconductance enhancement in bulk-driven input stages and its applications. Analog Integrated Circuits and Signal Processing, 68(2), 207–217.

    Article  Google Scholar 

  15. Kulej, T. (2013). 0.5-V bulk-driven CMOS operational amplifier. IET Circuits, Devices and Systems, 7(6), 352–360.

    Article  Google Scholar 

  16. Kulej, T. (2015). 0.4-V bulk-driven operational amplifier with improved input stage. Circuits Systems, and Signal Processing, 34, 1167–1185.

    Article  MathSciNet  Google Scholar 

  17. Carvajal, R. G., Angulo, J. R., Martin, A. J. L., Torralba, A., Galan, J. A. G., Carlosena, A., et al. (2005). The flipped voltage follower: A useful cell for low-voltage, low-power circuit design. IEEE Transaction on Circuits and Systems-I-Regular Papers, 52(7), 1276–1291.

    Article  Google Scholar 

  18. Yodtean, A., & Thanchayanont, A. (2013). Sub 1–V highly linear low power class AB bulk driven tunable CMOS transconductor. Analog Integrated Circuits and Signal Processing, 75(3), 383–397.

    Article  Google Scholar 

  19. Sharan, T., & Bhadauria, V. (2016). Subthreshold, cascode compensated, bulk-driven OTAs with enhanced gain and phase-margins. Microelectronics Journal, 54(8), 150–165.

    Article  Google Scholar 

  20. Sharan, T., & Bhadauria, V. (2017). Fully differential, bulk-driven, class AB, subthreshold OTA with enhanced slew rates and gain. Journal of Circuits System and Computers, 26(01), 1750001.

    Article  Google Scholar 

  21. Barúqui, F. A. P., & Petraglia, A. (2006). Linearly tunable CMOS OTA with constant dynamic range using source-degenerated current mirrors. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(9), 797–801.

    Article  Google Scholar 

  22. Rezaei, F., & Azhari, S. J. (2015). Transconductor linearization based on adaptive biasing of source-degenerative MOS transistors. Circuits Systems, and Signal Processing, 34, 1149–1165.

    Article  MathSciNet  Google Scholar 

  23. Niranjan, V., Kumar, A., & Jain, S. B. (2014). Composite transistor cell using dynamic body bias for high gain and low-voltage applications. Journal of Circuits System and Computers, 23(08), 1450108.

    Article  Google Scholar 

  24. Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2008). An ultra-low-voltage ultra-low-power weak inversion composite MOS transistor: Concept and applications. IEICE Transactions on Electronics, 91(4), 662–665.

    Article  Google Scholar 

  25. Ferreira, L. H. C., & Sonkusale, S. R. (2014). A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process. IEEE Transactions on Circuits and System I, 61(6), 1609–1617.

    Article  Google Scholar 

  26. Akbari, M., & Hashemipour, O. (2015). A 0.6-V, 0.4 μW bulk-driven operational amplifier with rail-to-rail input/output swing. Analog Integrated Circuits and Signal Processing, Mixed Signal Letter, 86(2), 341–351.

    Article  Google Scholar 

  27. Grasso, A. D., Marano, D., Palumbo, G., & Pennisi, S. (2015). Design methodology of subthreshold three-stage CMOS OTA suitable for ultra-low-power low- area and high driving capability. IEEE Transactions on Circuits and Systems I: Regular Papers, 62, 1453–1462.

    Article  MathSciNet  Google Scholar 

  28. Bhadauria, V., Kant, K., & Banerjee, S. (2011). Linearity enhancement of 0.18 µm transconductor using active attenuation technique. In Proceedings of the Asia Pacific conference on circuits and systems (APCCAS 2010), Kuala Lumpur, Malaysia (pp. 5–8).

  29. Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2002). An ultra-low-voltage ultra-low-power weak inversion composite MOS transistor: Concept and applications. IEICE Transactions on Fundamentals/Communication/Electron/Information & Systems, E, 85(1), 662–665.

    Google Scholar 

  30. Yodprasit, U., & Enz, C. C. (2003). A 1.5-V 75-dB dynamic range third-order Gm-C filter integrated in a 0.18-μm standard digital CMOS process. Journal of Solid-State Circuits IEEE, 38(7), 1189–1197.

    Google Scholar 

  31. Han, I. S. (2006). A novel tunable transconductance amplifier based on voltage-controlled resistance by MOS transistors. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(8), 662–666.

    Article  Google Scholar 

  32. Abbasalizadeh, S., Sheikhaei, S., & Forouzandeh, B. (2013). A 0.9 V Supply OTA in 0.18 μm CMOS technology and its application in realizing a tunable low-Pass Gm-C filter for wireless sensor networks. Circuits and Systems, 4, 34–43.

    Article  Google Scholar 

  33. Chih, H. C., Ismail, M., Halonen, K., & Porra, V. (1999). A low-voltage rail-to-rail CMOS VI converter. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(6), 816–820.

    Article  Google Scholar 

  34. Martin, A. J. L., Esparaza-Alfaro, F., Angulo, J. R., & Carvajal, R. G. (2011). Accurate micropower class AB CMOS voltage-to-current converter. In 20th European conference on circuit theory and design (ECCTD) (pp. 114–117). https://doi.org/10.1109/ECCTD.2011.6043290.

  35. Martinez, L., Carvajal, C. I., Torralba, R. G., Martin, A. L., Ramirez-Angulo, J., & Alvarado, U. (2009). Low-power baseband filter for zero-intermediate frequency digital video broadcasting terrestrial/handheld receivers. Circuits, Devices & Systems, IET, 3(5), 291–301.

    Article  Google Scholar 

  36. Zhao, X., Fang, H., Ling, T., & Xu, J. (2015). Transconductance improvement method for low-voltage bulk-driven input stage. Integration the VLSI Journal, 49(3), 98–103.

    Article  Google Scholar 

  37. Ali, S. (2015). A power efficient gain enhancing techniques for current mirror operational transconductance amplifiers. Microelectronics Journal, 46(2), 183–190.

    Article  Google Scholar 

  38. Chatterjee, S., Pun, K. P., Stanic, N., Tsividis, Y., & Kinget, P. (2007). Analog circuit design techniques at 0.5 V. Analog circuits and signal processing (pp. 1–156). New York: Springer.

    Book  Google Scholar 

  39. Binkley, D. M. (2008). Tradeoffs and optimization in analog CMOS design (p. 47). New York: Wiley.

    Book  Google Scholar 

  40. Tsividis, Y., & McAndrew, C. (2010). Operation and modelling of the MOS transistors (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  41. Carusone, T. C., Johns, D. A., & Martin, K. W. (2011). Analog integrated circuit design (2nd ed., Chap. 12, pp. 473–478). Wiley & Sons, Inc.

  42. Rasoul, D. (2013). Design of CMOS operational amplifiers (Chap. 4, pp. 90–93; Chap. 5, pp. 127–129). Boston, London: Artech House.

  43. Laker, K. R., & Sansen, W. M. C. (1994). Design of analog integrated circuits and systems (Chap. 6, pp. 577–584). McGraw-Hill, Inc., International Edition.

  44. Sharma, Vijay Kumar, & Pattanaik, Manisha. (2014). Process voltage and temperature variations aware low leakage approach for nanoscale CMOS circuits. Journal of Low Power Electronics, 10(1), 45–52.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been performed using the resources of VLSI laboratories of ECE and EE Departments in Cadence Spectre UMC 0.18 μm CMOS process technology environment, developed under TEQIP-II project funded by Department of Information Technology, Ministry of Communication and Information Technology Government of India at NERIST, Nirjuli, Arunachal Pradesh, 791109, India. The authors appreciate the help provided by Tanmay Dubey in learning the layout design aspects of cadence tool in its UMC library file, during revision process of this manuscript. The authors further, appreciate the valuable comments of the reviewers which has improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tripurari Sharan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10470-018-1121-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharan, T., Chetri, P. & Bhadauria, V. Ultra-low-power bulk-driven fully differential subthreshold OTAs with partial positive feedback for Gm-C filters. Analog Integr Circ Sig Process 94, 427–447 (2018). https://doi.org/10.1007/s10470-017-1065-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1065-5

Keywords

Navigation