Skip to main content
Log in

Asymmetrically CPW-fed ladder-shaped fractal antenna for UWB applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A compact asymmetrically CPW-fed ladder- shaped UWB fractal antenna is presented. An impedance bandwidth of 4.56–13.1 GHz is achieved by using four iterations of H-shaped radiating element, modified feed line, asymmetrical feeding and slot loaded ground plane. Omnidirectional radiation patterns are achieved in H-plane at all frequency points in the operating frequency band. The bidirectional nature of E-plane patterns at lower frequencies is observed to be shifted to directional nature at higher frequencies. The designed antenna structure has an average gain of 2.84 dB with a constant group delay. The designed antenna structure is analyzed for three different substrate materials i.e. CNT, Ni0.2Co0.2Zn0.6Fe2O4 and FR-4 epoxy. A good agreement is achieved between the simulated and measured results. This antenna structure has advantages of wider bandwidth and smaller dimensions over already reported ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fedral Communication Commission. (2002). First order and report: Revision of part 15 of the Commission’s rules regarding UWB transmission systems (2002).

  2. Fallahi, H., & Atlasbaf, Z. (2013). Study of a class of UWB CPW-fed monopole antenna with fractal elements. IEEE Antennas and Wireless Propagation Letters, 12, 1484–1487.

    Article  Google Scholar 

  3. Ghatak, R., Karmakar, A., & Poddar, D. R. (2013). Hexagonal boundary Sierpinski carpet fractal shaped compact ultra wideband antenna with band rejection functionality. AEU—International Journal of Electronics and Communications, 67, 250–255.

    Google Scholar 

  4. Park, J. K., An, H. S., & Lee, J. N. (2008). Design of the tree-shaped UWB antenna using fractal concept. Microwave and Optical Technology Letters, 50(1), 144–150.

    Article  Google Scholar 

  5. Kumar, R., Malathi, P., & Sawant, K. (2011). On the design of wheel shaped fractal antenna. Microwave and Optical Technology Letters, 53(1), 155–158.

    Article  Google Scholar 

  6. Ghatak, R., Biswas, B., Karmakar, A., & Poddar, D. R. (2013). A circular fractal UWB antenna based on descartes circle theorem with band rejection capability. Progress In Electromagnetics Research C, 37, 235–248.

    Article  Google Scholar 

  7. Moghadasi, M. N., Sadeghzadeh, R. A., Sedghi, T., Aribi, T., & Virdee, B. S. (2013). UWB CPW-fed fractal patch antenna with band-notched function employing folded T-shaped element. IEEE Antennas and Wireless Propagation Letters, 12, 504–507.

    Article  Google Scholar 

  8. Maza, A. R., Cook, B., Jabbour, G., & Shamim, A. (2012). Paper-based inkjet-printed ultra-wideband fractal antennas. IET Microwaves, Antennas and Propagation, 6(12), 1366–1373.

    Article  Google Scholar 

  9. Jahromi, M. N., Falahati, A., & Edwards, R. M. (2011). Bandwidth and impedance-matching enhancement of fractal monopole antennas using compact grounded coplanar waveguide. IEEE Transactions on Antennas and Propagation, 59(7), 2480–2487.

    Article  Google Scholar 

  10. Li, Y. S., Yang, X. D., Liu, C. Y., & Jiang, T. (2011). Analysis and investigation of a cantor set fractal UWB antenna with a notch-band characteristic. Progress in Electromagnetics Research B, 33, 99–114.

    Article  Google Scholar 

  11. Kumar, R., & Malathi, P. (2011). On the design of CPW-feed diamond shape fractal antenna for UWB applications. International Journal of Electronics, 98(9), 1157–1168.

    Article  Google Scholar 

  12. Krishna, D. D., Gopikrishna, M., Aanandan, C. K., Mohanan, P., & Vasudevan, K. (2009). Compact wideband Koch fractal printed slot antenna. IET Microwaves, Antennas and Propagation, 3(5), 782–789.

    Article  Google Scholar 

  13. HFSS: High Frequency Structure Simulator ver. 11, Finite Element Package. Ansoft Corporation. Available http://www.ansoft.com, 2009.

  14. CST Microwave Studio Suite 2011, CST Inc., 2007.

  15. Li, Y. H., & Lue, J. T. (2007). Dielectric constants of single-wall carbon nanotubes at various frequencies. Journal of Nanoscience and Nanotechnology, American Scientific Publishers, 7, 1–4.

    Google Scholar 

  16. Mohit, K., Gupta, V. R., Gupta, N., & Rout, S. K. (2014). Structural and microwave characterization of Ni0.2CoxZn0.8−xFe2O4 for antenna applications. Ceramics International, Science Direct, 40, 1575–1586.

    Article  Google Scholar 

  17. Quintero, G., Zurcher, J. F., & Skrivervik, A. K. (2011). System fidelity factor: A new method for comparing UWB antennas. IEEE Transaction on Antennas and Propagation, 59(7), 2502–2512.

    Article  Google Scholar 

  18. Electronic Communications Committee (ECC): The European table of frequency allocations and applications, ERC report 25 (2014).

Download references

Acknowledgements

Sarthak Singhal is very thankful to the Ministry of Human Resource Development, Government of India, for providing the financial support in the form of teaching assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarthak Singhal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, S., Singh, A.K. Asymmetrically CPW-fed ladder-shaped fractal antenna for UWB applications. Analog Integr Circ Sig Process 92, 91–101 (2017). https://doi.org/10.1007/s10470-017-0976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0976-5

Keywords

Navigation