Skip to main content
Log in

New CMOS realization of high performance Voltage Differencing Inverting Buffered Amplifier and its filter application

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes a high performance voltage differencing inverting buffered amplifier (VDIBA). The transconductance of the proposed circuit is enhanced by using positive feedback technique with only two extra transistors used in active load. Moreover, the bandwidth of proposed circuit is enhanced by using resistive compensation technique. The performance of proposed VDIBA is demonstrated by detailed frequency analysis. Furthermore, it is shown that the transconductance can be enhanced up to 4.61 mS at biasing current of 300 µA. In addition, a third order low pass filter is given as an application example to confirm the high performance of the proposed VDIBA. The proposed low pass filter operates at natural pole frequency of 15 MHz. The proposed VDIBA and its filter application are implemented using TSMC 90 nm CMOS technology in Cadence virtuoso schematic composer at ±0.6 V supply voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: classification, review, and new proposals. Radioengineering, 17(4), 15–32.

    Google Scholar 

  2. Herencsar, N., Minaei, S., Koton, J., Yuce, E., & Vrba, K. (2013). New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integrated Circuits and Signal Processing, 74(1), 141–154.

    Article  Google Scholar 

  3. Pushkar, K. L., Bhaskar, D. R., & Prasad, D. (2014). Voltage-mode new universal biquad filter configuration using a single VDIBA. Circuits, Systems, and Signal Processing, 33(1), 275–285.

    Article  Google Scholar 

  4. Herencsar, N., Cicekoglu, O., Sotner, R., Koton, J., & Vrba, K. (2013). New resistorless tunable voltage-mode universal filter using single VDIBA. Analog Integrated Circuits and Signal Processing, 76(2), 251–260.

    Article  Google Scholar 

  5. Kacar, F., Yeşil, A., & Noori, A. (2012). New CMOS realization of voltage differencing buffered amplifier and its biquad filter applications. Radioengineering, 21(1), 333–339.

    Google Scholar 

  6. Sotner, R., Jerabek, J., & Herencsar, N. (2013). Voltage differencing buffered/inverted amplifiers and their applications for signal generation. Radioengineering, 22(2), 490–504.

    Google Scholar 

  7. Biolek, D., Biolkova, V., & Kolka, Z. (2010, February). All-pass filter employing fully balanced voltage differencing buffered amplifier. In Proceeding of the IEEE Latin American Symposium on Circuits and Systems (LASCAS 2010) (pp. 232–235).

  8. Biolkova, V., Kolka, Z., & Biolek, D. (2009). Fully balanced voltage differencing buffered amplifier and its applications. In Proceedings of the 52th IEEE Midwest Symposium on Circuit and System (MWSCAS), (pp. 45–48).

  9. Wang, R., & Harjani, R. (1995). Partial positive feedback for gain enhancement of low-power CMOS OTAs. Analog Integrated Circuits and Signal Processing, 8(1), 21–35.

    Article  Google Scholar 

  10. Szczepański, S. (1994). VHF fully-differential linearized CMOS transconductance element and its applications. In IEEE International Symposium on Circuits and Systems (ISCAS) (Vol. 5, pp. 97–100).

  11. Akbari, M., Biabanifard, S., Asadi, S., & Yagoub, M. C. (2015). High performance folded cascode OTA using positive feedback and recycling structure. Analog Integrated Circuits and Signal Processing, 82(1), 217–227.

    Article  Google Scholar 

  12. Ramírez-Angulo, J., Calvo, B., Carvajal, R. G., & López-Martin, A. (2010). Low-voltage g m-enhanced CMOS differential pairs using positive feedback. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 773–776).

  13. Amourah, M. M., & Geiger, R. L. (2002). All digital transistor high gain operational amplifier using positive feedback technique. In International Symposium on Circuits and Systems (ISCAS) (Vol. 1, pp. I–701).

  14. Amourah, M. M., & Geiger, R. L. (2001, May). Gain and bandwidth boosting techniques for high-speed operational amplifiers. In IEEE International Symposium on Circuits and Systems (ISCAS) (Vol. 1, pp. 232–235).

  15. Amourah, M. M., & Geiger, R. L. (2001, May). A high gain strategy with positive-feedback gain enhancement technique. In IEEE International Symposium on Circuits and Systems (Vol. 1, pp. 631–634).

  16. Pude, M., Mukund, P. R., Singh, P., Paradis, K., & Burleson, J. (2010). Amplifier gain enhancement with positive feedback. In 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 981–984).

  17. Pude, M., Macchietto, C., Singh, P., Burleson, J., & Mukund, P. R. (2007). Maximum intrinsic gain degradation in technology scaling. In Semiconductor Device Research Symposium, 2007 International (pp. 1–2).

  18. Yan, J., Tiew, K. C., & Geiger, R. L. (2001). Open loop pole location bounds for partial positive feedback gain enhancement operational amplifiers. In Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, (MWSCAS) (Vol. 1, pp. 425–428).

  19. Schlarmann, M., Malik, S., & Geiger, R. (2002). Positive feedback gain-enhancement techniques for amplifier design. In IEEE International Symposium on Circuits and Systems (No. 2, pp. II–37).

  20. Voo, T., & Toumazou, C. (1995). High-speed current mirror resistive compensation technique. Electronics Letters, 31(4), 248–250.

    Article  Google Scholar 

  21. Voo, T., & Toumazou, C. (1996). Precision temperature stabilized tunable CMOS current-mirror for filter applications. Electronics Letters, 32(2), 105–106.

    Article  Google Scholar 

  22. Tangsrirat, W. (2012). Active-C Realization on nth-order Current-Mode All pole Low pass Filters Using CFTAs. In Proceeding Int. Multi Conf. of Engineers and Computer Scientists-IMECS, Hong Kong, 2.

  23. Tangsrirat, W. (2014). SFG synthesis of general high-order all-pass and all-pole current transfer functions using CFTAs. The Scientific World Journal, 2014.

  24. Allen, P. E., & Holberg, D. R. (2002). CMOS Analog Circuit Design (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  25. Soderstrand, M. A., & Mitra, S. K. (1971). Sensitivity analysis of third-order filters. International Journal of Electronics Theoretical and Experimental, 30(3), 265–272.

    Article  Google Scholar 

  26. Shen, J., & Kinget, P. R. (2008). A 0.5-V 8-bit 10-Ms/s pipelined ADC in 90-nm CMOS. IEEE Journal of Solid-State Circuits, 43(4), 787–795.

    Article  Google Scholar 

  27. Yodprasit, U., & Enz, C. C. (2003). A 1.5-V 75-dB dynamic range third-order Gm-C filter integrated in a 0.18-μm standard digital CMOS process. IEEE Journal of Solid-State Circuits, 38(7), 1189–1197.

    Google Scholar 

  28. Chatterjee, S., Tsividis, Y., & Kinget, P. (2005). 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE Journal of Solid-State Circuits, 40, 2373–2387.

    Article  Google Scholar 

  29. Zhang, X., & El-Masry, E. I. (2007). A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1204–1212.

    Article  Google Scholar 

  30. Carrillo, J. M., Duque-Carrillo, J. F., & Torelli, G. (2008, May). 1-V continuously tunable CMOS bulk-driven transconductor for G m-C filters. In 2008 IEEE International Symposium on Circuits and Systems (pp. 896–899). IEEE.

  31. Carillo, J. G., Torelli, M., Dominguez, J., & Duque-Carillo, J. (2010). On the input common mode voltage range of CMOS bulk driven Input stages. International Journal of Circuit Theory Applications, 39, 649–664.

    Article  Google Scholar 

  32. Rodriguez-Villegas, E., Casson, A. J., & Corbishley, P. (2011). A subhertz nanopower low-pass filter. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(6), 351–355.

    Article  Google Scholar 

  33. Mahmoud, S. A., Bamakhramah, A., & Al-Tunaiji, S. A. (2013). Low-noise low-pass filter for ECG portable detection systems with digitally programmable range. Circuits, Systems, and Signal Processing, 32(5), 2029–2045.

    Article  MathSciNet  Google Scholar 

  34. Lu, J., Yang, T., Jahan, M. S., & Holleman, J. (2014, August). A low-power 84-dB dynamic-range tunable Gm-C filter for bio-signal acquisition. In 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1029–1032). IEEE.

  35. Gupta, M., Srivastava, R., & Singh, U. (2015). Low-voltage low-power FGMOS based VDIBA and its application as universal filter. Microelectronics Journal, 46(2), 125–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Gupta, M. New CMOS realization of high performance Voltage Differencing Inverting Buffered Amplifier and its filter application. Analog Integr Circ Sig Process 92, 167–178 (2017). https://doi.org/10.1007/s10470-017-0968-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0968-5

Keywords

Navigation