Skip to main content
Log in

An ultra-wideband pico-second true-time-delay circuit with differential tunable active inductor

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An ultra-wideband (UWB) active true time-delay circuit with a differential tunable active inductor for LC-tank is presented and fabricated in a 0.18 μm CMOS process. The proposed delay circuit consists of a transistor, a differential active inductor (DAI), a resistor and a load, which can be approximated by a second-order all-pass filter as the basic delay element to improve the delay resolution in UWB beam-forming timed array and also be used as the hardware delay to enhance the handling speed in high-speed parallel signal processing. A novel DAI using the g m-boosting and the negative impedance transformation techniques is designed to improve delay precision and bandwidth. The proposed active delay circuit is realized without any passive inductors, which can reduce the chip area and fabricated cost. Within 3–12 GHz, the measured group delay is tunable from 6 to 8.5 ps with <10% variation and gain fluctuation is kept within 0.5 dB. The chip experimentally demonstrates an input 1-dB compression point of 14.6 dBm and consumes 12 mW from a 1.8-V supply. The core area is only 85 μm × 45 μm due to the absence of the spiral inductor. To the authors’ best knowledge, this work is firstly published that the second-order allpass filter using active inductor has the picosecond-delay time in silicon-based GHz frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Brookner, E. (2008). Phased-array and radar astounding breakthroughs—An update. In Proceedings of 2008 IEEE conference on radar, Rome (pp. 1–6).

  2. Wijenayake, C., Xu, Y., Madanayake, A., Belostotski, L., & Bruton, L. T. (2012). RF analog beamforming fan filters using CMOS all-pass time delay approximations. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(5), 1061–1073.

    Article  MathSciNet  Google Scholar 

  3. Cao, Z., Ma, Q., Smolders, A. B., Jiao, Y., Wale, M. J., Oh, C. W., et al. (2016). Advanced integration techniques on broadband millimeter-wave beam steering for 5G wireless networks and beyond. IEEE Journal of Quantum Electronics, 52(1), 1–20.

    Article  Google Scholar 

  4. Garakoui, S. K., Klumperink, E. A., Nauta, B., & van Vliet, F. E. (2015). Compact cascadable gm-C all-pass true time delay cell with reduced delay variation over frequency. IEEE Journal of Solid-State Circuits, 50(3), 693–703.

    Article  Google Scholar 

  5. Chia, M. W., Lim, T. H., Yin, J. K., Chee, P. Y., Leong, S. W., & Sim, C. K. (2006). Electronic beam-steering design for UWB phased array. IEEE Transactions on Microwave Theory and Techniques, 54(6), 2431–2438.

    Article  Google Scholar 

  6. Ma, Q., Leenaerts, D. M. W., & Baltus, P. G. M. (2015). Silicon-based true-time-delay phased-array front-ends at ka-band. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2942–2952.

    Article  Google Scholar 

  7. Chu, T. S., Roderick, J., & Hashemi, H. (2008). An integrated ultra-wideband timed array receiver in 0.13 μm CMOS using a path-sharing true time delay architecture. IEEE Journal of Solid-State Circuits, 42(12), 2834–2850.

    Article  Google Scholar 

  8. Daniels, R. W. (1974). Approximation methods for electronic filter design. New York: McGrawHill.

    Google Scholar 

  9. Zhou, L., Safarian, A., & Heydari, P. (2006). CMOS wideband analogue delay stage. Electronics Letters, 42(21), 1213–1214.

    Article  Google Scholar 

  10. Ahmadi, P., Taghavi, M. H., Belostotski, L., & Madanayake, A. (2013). 10-GHz current-mode 1st- and 2nd-order allpass filters on 130 nm CMOS. In Midwest symposium on circuits & systems (pp. 1–4).

  11. Ulusoy, A. C., Schleicher, B., & Schumacher, H. (2011). A tunable differential all-pass filter for UWB true time delay and phase shift applications. IEEE Microwave and Wireless Components Letters, 21(9), 462–464.

    Article  Google Scholar 

  12. Ahmadi, P., Maundy, B., Elwakil, A. S., Belostotski, L., & Madanayake, A. (2016). A new second-order all-pass filter in 130-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(3), 249–253.

    Article  Google Scholar 

  13. Momen, H. G., Yazgi, M., Kopru, R., & Saatlo, A. N. (2016). Design of a new low loss fully CMOS tunable floating active inductor. Analog Integrated Circuits and Signal Processing, 89(3), 727–737.

    Article  Google Scholar 

  14. Yuan, F. (2010). CMOS active inductors and transformers (pp. 21–99). Berlin: Springer.

    Google Scholar 

  15. Yildiz, H., Ozoguz, S., Toker, A., & Cicekoglu, O. (2013). On the realization of MOS-only allpass filters. Circuits Systems and Signal Processing, 32(3), 1455–1465.

    Article  Google Scholar 

  16. Li, X., Shekhar, S., & Allstot, D. J. (2005). Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 40(12), 2609–2619.

    Article  Google Scholar 

  17. Zhan, J. H., Maurice, K., Duster, J., & Kornegay, K. T. (2003). Analysis and design of negative impedance LC oscillators using bipolar transistors. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(11), 1461–1464.

    Article  Google Scholar 

  18. Lu, L. H., Hsieh, H. H., & Liao, Y. T. (2006). A wide tuning-range CMOS VCO with a differential tunable active inductor. IEEE Transactions on Microwave Theory and Techniques, 54(9), 3462–3468.

    Article  Google Scholar 

  19. Lai, Q., & Mao, J. (2010). A new floating active inductor using resistive feedback technique. In Microwave symposium digest (MTT), 2010 IEEE MTT-S international, Anaheim (pp. 1748–1751).

  20. Chang, Y. W., & Kuo, C. N. (2010). Tunable delay compensation circuit in polar loop transmitter for WiMAX applications. In Microwave conference proceedings (APMC), 2010 Asia-Pacific IEEE (pp. 426–429).

  21. Chang,Y. W., Yan,T. C.,&Kuo, C. N. (2011). Wideband time-delay circuit. In Proceedings of IEEE European Microwave Integrated Circuits Conference (EmMIC) (pp. 454–457).

  22. Ahmadi, P., Taghavi, M., Belostotski, L., & Madanayake, A. (2015). A 0.13-μm CMOS current-mode all-pass filter for multi-GHz operation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(12), 2813–2818.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61471119). The authors wish to thank Wei Li and Li Zhang for technical instructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, W. An ultra-wideband pico-second true-time-delay circuit with differential tunable active inductor. Analog Integr Circ Sig Process 91, 9–19 (2017). https://doi.org/10.1007/s10470-017-0927-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0927-1

Keywords

Navigation