Skip to main content
Log in

Design of new practical phase shaping circuit using optimal pole–zero interlacing algorithm for fractional order PID controller

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

An Erratum to this article was published on 20 February 2017

Abstract

This paper presents the implementation of fractional order PID (FO-PID) controller using hardwired modules of constant phase element (CPE). A new approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within the given bandwidth is realized. Analog circuits, which exhibit analog fractional-order integrator and fractional-order differentiator, are used for building the FO-PID controller. The design procedure is developed to obtain the optimal pole–zero pairs and respective “Fractance” components to realize for any value of fractional differ-integrator. These CPE elements give minimum error tolerance over the set phase value by using commercially available (R–C) components and Op-Amps. The pole–zero location in the root locus plot with constant asymptotic angle under various feed-forward gains is achieved with these analog integrodifferential circuits of the FO-PID. The iso-damping feature of the controller is practically demonstrated. A comparative performance is demonstrated under various settings of feed forward gains, which indicate the constant overshoot with FO-PID against the conventional PID. These circuits are developed and implemented with a DC motor emulator to confirm the designed performance of the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Das, S. (2011). Functional fractional calculus (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  2. Podlubny, I. (1999). Fractional differential equations. San Diego: Academic press.

    MATH  Google Scholar 

  3. Hamamci, S. E. (2007). An algorithm for stabilization of fractional-order time delay system using fractional-order PID controller. IEEE Transactions on Automatic Control, 52(10), 1964–1969. doi:10.1109/TAC.2007.906243.

    Article  MathSciNet  Google Scholar 

  4. Valerio, D., & Costa, J. S. D. (2005). Time-domain implementation of fractional order controllers. IEE Proceedings of Control Theory and Application, 152(5), 539–552.

    Article  Google Scholar 

  5. Petras, I. (2012). Calculation tuning and implementation methods for fractional-order controllers. Fractional Calculus and Applied Analysis, 15(2), 282–303. doi:10.2478/s13540-012-0021-4.

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbosa, R. S., Jesus, I. S., Silva, M. F., & Machado, J. A. T. (2012). Realization of fractional-order controllers: Analysis, synthesis, and application to the velocity control of a servo system. In A. C. J. Luo, J.-Q. Sun (Eds.), Complex systems (pp. 43–82). New York: Springer. doi:10.1007/978-3-642-17593-0_2.

    Google Scholar 

  7. Valerio, D., & Costa, J. S. D. (2011). Variable order fractional derivatives and their numerical approximation. Signal Processing, 91(3), 470–483.

    Article  MATH  Google Scholar 

  8. Oustaloup, A., Levron, F., Mathieu, B., & Nanot, F. M. (2000). Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1), 25–39. doi:10.1109/81.817385.

    Article  Google Scholar 

  9. Yeroglu, C., Mine Ozyetkin, M., & Tan, N. (2010). Frequency response computation of fractional order interval transfer functions. International Journal of Control Automation System, 8(5), 1009–1017.

    Article  Google Scholar 

  10. El-Khazali, R. (2013). Fractional-order PIλDμ controller design. Computers and Mathematics with Applications, 66(5), 639–646. doi:10.1016/j.camwa.2013.02.015.

    Article  MathSciNet  MATH  Google Scholar 

  11. Valerio, D., & Costa, J. S. D. (2011). Introduction of single-input, single output fractional control. IET Control Theory and Applications, 5(8), 1033–1057. doi:10.1049/iet-cta.2010.0332.

    Article  MathSciNet  Google Scholar 

  12. Bettou, K., Charef, A., & Mesquine, F. (2008). A new design method for fractional PID controller. International Journal of Sciences and Techniques of Automatic Control and Computer Engineering, 2, 414–429.

    Google Scholar 

  13. Luo, Y., & Chen, Y. Q. (2009). Fractional order [proportional derivative] controller for a class of fractional-order systems. Automatica, 45(10), 2446–2450.

    Article  MathSciNet  MATH  Google Scholar 

  14. Khubalkar, S., Chopade, A., Junghare, A., Aware, M., & Das, S. (2016). Design and realization of stand-alone digital fractional orderPID controller for buck converter fed DC motor. Circuits, Systems, and Signal Processing, 35(6), 2189–2211. doi:10.1007/s00034-016-0262-2.

    Article  Google Scholar 

  15. Aghababa, M. P. (2016). Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm. Soft Computing, 20(10), 4055–4067.

    Article  Google Scholar 

  16. Pommier-Budinger, V., Janat, Y., Nelson-Gruel, D., Lanusse, P., & Oustaloup, A. (2008). Fractional robust control with iso-damping property. In IEEE American control conference (pp. 4954–4959). Seattle, WA. doi:10.1109/ACC.2008.4587279.

  17. Chen, Y. Q., Moore, K. L., Vinagre, B. M., & Podlubny, I. (2004). Robust PID controller autotuning with a phase shaper. In First IFAC workshop on fractional differentiation and its applications (pp. 162–167).

  18. Cech, M., & Schlegel, M. (2012). Optimal loop shaping compensators for fractional order model set. In IEEE/ASME international conference on mechatronics and embedded systems and applications, Suzhou, (pp. 131–136). doi:10.1109/MESA.2012.6275550.

  19. Luo, Y., Chao, H. C., Di, L., & Chen, Y. Q. (2011). Lateral directional fractional order (PI) π control of a small fixed-wing unmanned aerial vehicles: Controller designs and flight tests. IET Control Theory and Applications, 5(18), 2156–2167. doi:10.1049/iet-cta.2010.0314.

    Article  MathSciNet  Google Scholar 

  20. Saha, S., Das, S., Ghosh, R., Goswami, B., Balasubramanian, R., Chandra, A. K., et al. (2010). Design of a fractional order phase shaper for iso-damped control of a PHWR under step-back condition. IEEE Transactions on Nuclear Science, 57(3), 1602–1612.

    Article  Google Scholar 

  21. Mehra, V., Srivastava, S., & Varshney, P. (2010). Fractional-order PID controller design for speed control of DC motor. In IEEE conference on emerging trends in engineering and technology (pp. 422–425). doi:10.1109/ICETET.2010.123.

  22. Rasoanarivo, I., Arab-Tehrani, K., & Sargos, F. M. (2011). Fractional order PID and modulated hysteresis for high-performance current in multi-Level inverters. In IEEE industry applications society annual meeting (pp. 1–7). doi:10.1109/IAS.2011.6074351.

  23. Xue, D., Zhao, C., & Chen, Y. Q. (2006). Fractional order PID controller of a DC motor with elastic shaft: A case study. In Proceedings of American control conference (pp. 3182–3187). Minneapolis, Minnesota, USA. doi:10.1109/ACC.2006.1657207.

  24. Li, H. S., Luo, Y., & Chen, Y. Q. (2010). A fractional order proportional and derivative (FOPD) motion controller: Tuning rule and experiments. IEEE Transactions on Control Systems Technology, 18(2), 516–520.

    Article  Google Scholar 

  25. Monje, C. A., Vinagre, B. M., Feliu, V., & Chen, Y. Q. (2008). Tuning and auto-tuning of fractional order controller for industrial application. Control Engineering Practice, 16(7), 798–812.

    Article  Google Scholar 

  26. Charef, A. (2006). Modeling and analog realization of the fundamental linear fractional order differential equation. Nonlinear Dynamics, 46(1), 195–210.

    Article  MathSciNet  MATH  Google Scholar 

  27. Efe, M. O. (2011). Fractional-order systems in industrial automation - a survey. IEEE Transactions on Industrial Informatics, 7(4), 582–591. doi:10.1109/TII.2011.2166775.

    Article  Google Scholar 

  28. Bohannan, G. W. (2002). Analog realization of a fractional control element-revisited. In Proceedings of the 41st IEEE international conference on decision and control, Tutorial Workshop (Vol. 2, pp. 203–208).

  29. Podlubny, I. (1999). Fractional-order systems and PIλDμcontrollers. IEEE Transactions on Automatic Control, 44(1), 208–214.

    Article  MathSciNet  MATH  Google Scholar 

  30. Podlubny, I., Petras, I., Vinagre, B. M., OLeary, P., & Dorcak, L. (2002). Analogue realization of fractional-order controllers. Nonlinear Dynamics, 29, 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  31. Petras, I., Sierociuk, D., & Podlubny, I. (2012). Identification of parameters of a half-order system. IEEE Transactions on Signal Processing, 60(10), 5561–5566.

    Article  MathSciNet  Google Scholar 

  32. Charef, A. (2006). Analogue realization of fractional-order integrator-differentiator and fractional PIλDµ controller. IEE Proceedings of Control Theory and Application, 153(6), 714–720.

    Article  Google Scholar 

  33. Dorcak, L., Valsa, J., Gonzalez, E., Terpak, J., Petras, I., & Pivka, L. (2013). Analogue realization of fractional-order dynamical systems. Entropy, 15, 4199–4214. doi:10.3390/e15104199.

    Article  MATH  Google Scholar 

  34. Djouambi, A., Charef, A., & Besancon, A. (2007). Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. International Journal of Applied Mathematics and Computer Science, 17(4), 455–462.

    Article  MathSciNet  MATH  Google Scholar 

  35. Dhabale, A., Dive, R., Aware, M. V., & Das, S. (2015). A new method for getting rational approximation for fractional order differintegrals. Asian Journal of Control, 17(6), 2143–2152. doi:10.1002/asjc.1148.

    Article  MathSciNet  MATH  Google Scholar 

  36. Maione, G., Caponetto, R., & Pisano, A. (2013). Optimization of zero–pole interlacing for indirect discrete approximations of non-integer order operators. Computers and Mathematics with Applications, 66, 746–754. doi:10.1016/j.camwa.2013.01.007.

    Article  MathSciNet  MATH  Google Scholar 

  37. El-Khazali, R. (2015). On the biquadratic approximation of fractional-order Laplacian operators. Analog Integrated Circuits and Signal Processing, 82(3), 503–517.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support provided by the Board of Research of Nuclear sciences of the Department of Atomic Energy, India, under the Project Sanction No. 2007/36/81-BRNS/2907 and 2012/36/69-BRNS/2951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnil W. Khubalkar.

Additional information

The original version of this article was revised: Fig. 4 has been incorrectly published in the online version. This has been corrected in this version.

An erratum to this article is available at http://dx.doi.org/10.1007/s10470-017-0946-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aware, M.V., Junghare, A.S., Khubalkar, S.W. et al. Design of new practical phase shaping circuit using optimal pole–zero interlacing algorithm for fractional order PID controller. Analog Integr Circ Sig Process 91, 131–145 (2017). https://doi.org/10.1007/s10470-016-0920-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0920-0

Keywords

Navigation