Skip to main content
Log in

A high-efficiency narrow-band class-F power amplifier integrated with a microstrip suppressing cell

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a high-efficiency class-F power amplifier (PA) is designed using integration between a low voltage p-HEMT transistor and a miniaturized microstrip suppressing cell. It results in nth harmonic suppression and high power added efficiency (PAE) under low radio frequency (RF) input powers. The simulation is performed based on harmonic balance analysis. The proposed power amplifier is fabricated, and measurements results validated the simulations. The proposed power amplifier operates at 1.8 GHz with 100 MHz bandwidth and an average PAE of 71.1%, with very low drain voltage of 2 V. At fundamental frequency of 1.8 GHz, the maximum measured PAE is 73.5% at about 12 dBm RF input power. The maximum output power and gain are 23.4 and 17.5 dBm in RF input power ranges of 0–12 dBm, respectively. The fabricated class-F PA with such characteristics can be used for power amplifications in wireless transmitters such as 4G (4th generation)-LTE (long term evolution) communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen, K., & Peroulis, D. (2013). A 3.1-GHz class-F power amplifier with 82% power-added-efficiency. IEEE Microwave and Wireless Components Letters, 23(8), 436–438.

    Article  Google Scholar 

  2. Rahmati, M. M., Abdipour, A., Mohammadi, A., & Moradi, G. (2011). An analytic approach for CDMA output of feedforward power amplifier. Analog Integrated Circuits and Signal Processing, 66(3), 349–361.

    Article  Google Scholar 

  3. Hayati, M., & Shama, F. (2016). A harmonic-suppressed high-efficiency class-F power amplifier with Elliptic-Function low-pass filter. AEU-International Journal of Electronics and Communications, 70(10), 1417–1425.

    Article  Google Scholar 

  4. Su, D. K., & McFarland, W. J. (1998). An IC for linearizing RF power amplifiers using envelope elimination and restoration. IEEE Journal of Solid-State Circuits, 33(12), 2252–2258.

    Article  Google Scholar 

  5. Aust, M., Wang, H., Biedenbender, M., Lai, R., Streit, D. C., Liu, P. H., et al. (1995). A 94-GHz monolithic balanced power amplifier using 0.1-μm gate GaAs-based HEMT MMIC production process technology. IEEE microwave and guided wave letters, 5(1), 12–14.

    Article  Google Scholar 

  6. Ding, L., Zhou, G. T., Morgan, D. R., Ma, Z., Kenney, J. S., Kim, J., et al. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.

    Article  Google Scholar 

  7. Hayati, M., Shama, F., Roshani, S., & Abdipour, A. (2014). Linearization design method in class-F power amplifier using artificial neural network. Journal of Computational Electronics, 13(4), 943–949.

    Article  Google Scholar 

  8. Mallet, A., Peyretailade, T., Sommet, R., Floriot, D., Delage, S., Nebus, et all. (1996). A design method for high efficiency class F HBT amplifiers. In Microwave Symposium Digest, 1996, IEEE MTT-S International (Vol. 2, pp. 855-858). IEEE.

  9. Pedro, J. C., Gomes, L. R., & Carvalho, N. B. (1998). Design techniques for highly efficient class-F amplifiers driven by low voltage supplies. In Electronics, Circuits and Systems, 1998 IEEE International Conference on (Vol. 3, pp. 201–204). IEEE.

  10. Grebennikov, A. V. (2000). Circuit design technique for high efficiency class F amplifiers. In Microwave Symposium Digest. 2000 IEEE MTT-S International (Vol. 2, pp. 771–774). IEEE.

  11. Honjo, K. (2000). A simple circuit synthesis method for microwave class-F ultra-high-efficiency amplifiers with reactance-compensation circuits. Solid-State Electronics, 44(8), 1477–1482.

    Article  Google Scholar 

  12. Gao, S., Butterworth, P., Ooi, S., & Sambell, A. (2006). High-efficiency power amplifier design including input harmonic termination. IEEE Microwave and Wireless Components Letters, 16(2), 81–83.

    Article  Google Scholar 

  13. Lépine, F., Adahl, A., & Zirath, H. (2005). L-band LDMOS power amplifiers based on an inverse class-F architecture. IEEE Transactions on Microwave Theory and Techniques, 53(6), 2007–2012.

    Article  Google Scholar 

  14. Wren, M., & Brazil, T. J. (2005). Experimental class-F power amplifier design using computationally efficient and accurate large-signal p-HEMT model. IEEE Transactions on Microwave Theory and Techniques, 53(5), 1723–1731.

    Article  Google Scholar 

  15. Woo, Y. Y., Yang, Y., & Kim, B. (2006). Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 54(5), 1969–1974.

    Article  Google Scholar 

  16. Lee, Y. S., Lee, M. W., & Jeong, Y. H. (2008). High-efficiency class-F GaN HEMT amplifier with simple parasitic-compensation circuit. IEEE Microwave and Wireless Components Letters, 18(1), 55–57.

    Article  MathSciNet  Google Scholar 

  17. Kim, J. H., Do Jo, G., Oh, J. H., Kim, Y. H., Lee, K. C., & Jung, J. H. (2011). Modeling and design methodology of high-efficiency class-F and class-power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 59(1), 153–165.

    Article  Google Scholar 

  18. Chen, S., & Xue, Q. (2011). A class-F power amplifier with CMRC. IEEE Microwave and Wireless Components Letters, 21(1), 31–33.

    Article  Google Scholar 

  19. Ding, Y., Guo, Y. X., & Liu, F. L. (2011). High-efficiency concurrent dual-band class-F and inverse class-F power amplifier. Electronics Letters, 47(15), 847–849.

    Article  Google Scholar 

  20. Allam-Ouyahia, S., Duperrier, C., Tolant, C., Temcamani, F., & Eudeline, P. (2011). Bandwidth enhancement of an inverse class-F power amplifier based on LDMOS devices. International Journal of Electronics, 98(10), 1411–1420.

    Article  Google Scholar 

  21. Jeong, H. C., Oh, H. S., & Yeom, K. W. (2011). A miniaturized WiMAX band 4-W class-F GaN HEMT power amplifier module. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3184–3194.

    Article  Google Scholar 

  22. Moon, J., Jee, S., Kim, J., Kim, J., & Kim, B. (2012). Behaviors of class-F and class-amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1937–1951.

    Article  MATH  Google Scholar 

  23. Tuffy, N., Guan, L., Zhu, A., & Brazil, T. J. (2012). A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1952–1963.

    Article  Google Scholar 

  24. King, J. B., & Brazil, T. J. (2013). Nonlinear electrothermal GaN HEMT model applied to high-efficiency power amplifier design. IEEE Transactions on Microwave Theory and Techniques, 61(1), 444–454.

    Article  Google Scholar 

  25. Nikandish, G., Babakrpur, E., & Medi, A. (2014). A harmonic termination technique for single-and multi-band high-efficiency class-F MMIC power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 62(5), 1212–1220.

    Article  Google Scholar 

  26. Raab, F. H. (1997). Class-F power amplifiers with maximally flat waveforms. IEEE Transactions on Microwave Theory and Techniques, 45(11), 2007–2012.

    Article  Google Scholar 

  27. Hayati, M., Shama, F., & Abbasi, H. (2013). Compact microstrip lowpass filter with wide stopband and sharp roll-off using tapered resonator. International Journal of Electronics, 100(12), 1751–1759.

    Article  Google Scholar 

  28. Hayati, M., Shama, F., Ekhteraei, M., & Sherafat Vaziri, H. (2015). Compact microstrip lowpass filter with very sharp roll-off and ultra-high Figure-of-merit for wireless applications. Journal of Electromagnetic Waves and Applications, 29(11), 1508–1522.

    Article  Google Scholar 

  29. Dupuy, A., Leong, K. M., & Itoh, T. (2005). Class-F power amplifier using a multi-frequency composite right/left-handed transmission line harmonic tuner. In IEEE MTT-S International Microwave Symposium Digest, 2005. (pp. 4-pp). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Hayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayati, M., Shama, F. A high-efficiency narrow-band class-F power amplifier integrated with a microstrip suppressing cell. Analog Integr Circ Sig Process 90, 351–359 (2017). https://doi.org/10.1007/s10470-016-0904-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0904-0

Keywords

Navigation