Skip to main content
Log in

Floating memristor emulator with subthreshold region

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Memristor which is recently discovered and known as missing circuit element is an important for memory, nonlinear and neuromorphic circuit designs. Modeling of memristor devices is essential for memristor based circuit design. In this paper, compact memristor which has high memristance value is introduced. The simulations are completed in LTspice program and expected results are obtained applying sinusoidal. Two memristor emulators are connected in serial, in parallel and promising results presented. The simulation results of applying positive pulse train to both of terminals of memristor are showed. The simulations of the proposed emulator showed the expected memristor characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chua, L. O. (1971). Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.

    Article  Google Scholar 

  2. Chua, L. O., & Kang S. M. (1976). Memristive devices and systems. In Proceedings of the IEEE, pp. 209–223.

  3. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  4. Varghese, D., & Gabdhi, G. (2009). Memristor based high linear range differantial pair. ICCCAS, pp. 935–938.

  5. Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE model of memristor with nonlinear dopant drift. Radioengineering, 18, 210–214.

    Google Scholar 

  6. Benderli, S., & Wey, T. A. (2009). On SPICE macromodelling of TiO2 memristors. Electronics Letters, 10(4), 377–379.

    Article  Google Scholar 

  7. Zhang, Y., Zhang, X., & Yu, J. (2009). Approximated SPICE model for memristor. In: International conference on communications, circuits and systems, ICCCAS.

  8. Biolek, D., Biolek, Z., & Biolkova, V. (2009). SPICE modeling of memristive, memcapacitative and meminductive systems. In: IEEE European conference on circuit theory and design.

  9. Chen, Y., & Wang, X. (2009). Compact modeling and corner analysis of spintronic memristor. In: International symposium nanoscale architect, pp. 7–12.

  10. Shin, S., et al. (2013). Compact circuit model and hardware emulation for floating memristor devices. IEEE Circuits and Systems Magazine, 13, 42–55.

    Article  Google Scholar 

  11. Yang, J., Strukov, D. B., & Stewart, D. R. (2013). Memristive devices for computing. Nature Nanotechnology, 8, 13–24.

    Article  Google Scholar 

  12. Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013). TEAM: Threshold adaptive memristor model. In: IEEE transactions on circuits and systems I: regular papers, pp. 211–221.

  13. Yakopcic, C., Taha, T. M., Subramanyam, G., Pino, R. E., & Rogers, S. (2011). A memristor device model. IEEE Electron Device Letters, 30, 1436–1438.

    Article  Google Scholar 

  14. Abdalla, H., & Pickett, M. D. (2011). SPICE modeling of memristors. In: IEEE international circuits and systems ISCAS, pp. 1832–1835.

  15. Williams, R. S., Pickett, M. D., & Strachan, J.P. (2013). Physics-based memristor models. In: IEEE international circuits and systems (ISCAS).

  16. Kolka, Z., Biolek, D., & Biolkova, V. (2012). Hybrid modelling and emulation of mem-systems. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 25, 216–225.

    Article  Google Scholar 

  17. Mutlu, R., & Karakulak, E. (2010) Emulator circuit of TiO2 memristor with linear dopant drift made using analog multiplier. In Electrical, electronics and computer engineering (ELECO), pp. 380–384.

  18. Kim, H., Sah, M., Yang, P., Cho, C. S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits System I Regular, 59, 2422–2431.

    Article  MathSciNet  Google Scholar 

  19. Yener, Ş., & Kuntman, H. (2012). A new CMOS based memristor implementation. In: Applied electronics 2012 international conference, pp. 345–348.

  20. Yesil, A., Babacan, Y., & Kacar, F. (2014). A new DDCC based memristor emulator circuit and its applications. Microelectronics Journal, 45, 282–287.

    Article  Google Scholar 

  21. Babacan, Y., Kacar, F., & Gurkan, K. (2016). A spiking and bursting neuron circuit based on memristor. Neurocomputing, 203, 86–91.

    Article  Google Scholar 

  22. Abunahla, H., Homouz, D., Halawani, Y., & Mohammad, B. (2014). Modeling and device parameter design to improve reset time in binary-oxide memristors. Applied Physics A, 117, 1019–1023.

    Article  Google Scholar 

  23. Mohammad, B., Homouz, D., & Algabra, H. (2013) Robust hybrid memristor-CMOS memory: Modeling and design. In: IEEE transactions on Very Large Scale Integration (VLSI) Systems.

  24. Toumazou, C., Lidgey, F. J., & Haigh, D. (1990). Analog IC design: The current-mode approach. Exeter, UK.

  25. Wang, Z. (1990). Current-controlled linear MOS earthed and floating resistors and application. In: IEEE proceedings on circuits, devices and systems, pp. 479–481.

  26. Sellami, L. (1997). Linear bilateral CMOS resistor for neuraltype circuits. In: International proceedings of the 40th midwest symposium on circuits and systems, pp. 1330–1333.

  27. Tajalli, A., et al. (2008). Implementing ultra-high-value floating tunable CMOS resistors. Electronics Letters, 44, 349–350.

    Article  Google Scholar 

  28. Gale, E., Mayne, R., Adamatzky, A., & Costello, B. L. (2014). Drop-coated titanium dioxide memristors. Materials Chemistry and Physics, 143, 524–529.

    Article  Google Scholar 

  29. Li, Y. T., Long, S. B., Lv, H. B., Liu, Q., Wang, Q., Wang, Y., Zhang, S., Lian, W. T., Liu, S., & Liu, M. (2010). A low-cost memristor based on titanium oxide. In: Solid-state and integrated circuit technology (ICSICT), 2010 10th IEEE international conference on, pp. 524–529.

  30. Efeoglu, H., Güllülü, S., & Karacali, T. (2015). Resistive switching of reactive sputtered TiO2 based memristor in crossbar geometry. Applied Surface Science, 350, 10–13.

    Article  Google Scholar 

  31. Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010). Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters, 10, 1297–1301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunus Babacan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babacan, Y., Kaçar, F. Floating memristor emulator with subthreshold region. Analog Integr Circ Sig Process 90, 471–475 (2017). https://doi.org/10.1007/s10470-016-0888-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0888-9

Keywords

Navigation