Skip to main content
Log in

Frequency compensation of two stage CMOS circuit using negative capacitance and flipped voltage follower

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new and compact two stage CMOS structure with enhanced gain-bandwidth product (GBW) and high slew rate. The frequency compensation technique employed here comprises of a negative capacitance cell and a flipped voltage follower (FVF). The use of negative capacitance lowers the parasitic capacitance of preceding stage and thereby achieves significant improvement in GBW. The FVF acts as a voltage buffer and exploits pole-zero cancellation technique. The required compensation capacitor is very small so it can save chip area. The workability of the proposed circuit has been verified by using Mentor Graphics Eldo simulation tool with TSMC CMOS 0.18 µm process parameters. The simulated results show a GBW of 1.2 GHz and average slew rate of 88 V/µs with a power consumption of 6.3 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Comer, D. J., et al. (2006). Bandwidth extension of high-gain CMOS stages using active negative capacitance. 13th IEEE international conference on electronics, circuits and systems, 2006, ICECS’06. IEEE.

  2. Ghadiri, A., & Moez, K. (2010). Gain-enhanced distributed amplifier using negative capacitance. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(11), 2834–2843.

    Article  MathSciNet  Google Scholar 

  3. Kolev, S., Delacressonniere, B., & Gautier, J.-L. (2001). Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Transactions on Microwave Theory and Techniques, 49(12), 2425–2430.

    Article  Google Scholar 

  4. Shoji, M., & Rolfe, R. M. (1985). Negative capacitance bus terminator for improving the switching speed of a microcomputer databus. IEEE Journal of Solid-State Circuits, 20(4), 828–832.

    Article  Google Scholar 

  5. Tsividis, Y. P., & Gray, P. R. (1976). An integrated NMOS operational amplifier with internal compensation. IEEE Journal of Solid-State Circuits, 11(6), 748–753.

    Article  Google Scholar 

  6. Smarandoiu, G., et al. (1978). CMOS pulse-code-modulation voice codec. IEEE Journal of Solid-State Circuits, 13(4), 504–510.

    Article  Google Scholar 

  7. Ramirez-Angulo, J., et al. (2002). The flipped voltage follower: A useful cell for low-voltage low-power circuit design. IEEE international symposium on circuits and systems, 2002, ISCAS 2002 (Vol. 3). IEEE.

  8. Peng, X., & Sansen, W. (2005). Transconductance with capacitances feedback compensation for multistage amplifiers. IEEE Journal of Solid-State Circuits, 40(7), 1514–1520.

    Article  Google Scholar 

  9. Ho, K.-P., et al. (2003). Reversed nested Miller compensation with voltage buffer and nulling resistor. IEEE Journal of Solid-State Circuits, 38(10), 1735–1738.

    Article  Google Scholar 

  10. Assaad, R. S., & Silva-Martinez, J. (2009). The recycling folded cascode: A general enhancement of the folded cascode amplifier. IEEE Journal of Solid-State Circuits, 44(9), 2535–2542.

    Article  Google Scholar 

  11. Tan, M. T., et al. (2010). AC-boosting frequency compensation with double pole-zero cancellation for multistage amplifiers. Circuits, Systems and Signal Processing, 29(5), 941–951.

    Article  MATH  Google Scholar 

  12. Mesri, A., et al. (2015). High gain two-stage amplifier with positive capacitive feedback compensation. Circuits, Devices Systems, 9(3), 181–190.

    Article  Google Scholar 

  13. Biabanifard, S., et al. (2015). High performance reversed nested Miller frequency compensation. Analog Integrated Circuits and Signal Processing, 85(1), 223–233.

    Article  Google Scholar 

  14. Mirvakili, A., & Koomson, V. J. (2014). Passive frequency compensation for high gain-bandwidth and high slew-rate two-stage OTA. Electronics Letters, 50(9), 657–659.

    Article  Google Scholar 

  15. Perez, A. P., et al. (2009). Slew-rate and gain enhancement in two stage operational amplifiers. IEEE international symposium on circuits and systems, 2009, ISCAS 2009. IEEE.

  16. Cannizzaro, S. O., et al. (2008). Single Miller capacitor frequency compensation with nulling resistor for three-stage amplifiers. International Journal of Circuit Theory and Applications, 36(7), 825–837.

    Article  Google Scholar 

  17. Singh, U., & Gupta, M. (2013). High frequency flipped voltage follower with improved performance and its application. Microelectronics, 44(12), 1175–1192.

    Article  MathSciNet  Google Scholar 

  18. Singh, U., Gupta, M., & Srivastava, R. (2015). A new wideband regulated cascode amplifier with improved performance and its application. Microelectronics, 46, 758–776.

    Article  Google Scholar 

  19. Gupta, M., & Singh, U. (2012). A new flipped voltage follower with enhanced bandwidth and low output impedance. Analog Integrated Circuits and Signal Processing, 72(1), 279–288.

    Article  Google Scholar 

  20. Aminzadeh, H., Danaie, M., & Serdijn, W. A. (2013). Hybrid cascode feedforward compensation for nano-scale low-power ultra-area-efficient three-stage amplifiers. Microelectronics Journal, 44(12), 1201–1207.

    Article  Google Scholar 

  21. Ahmadi, M. M. (2006). A new modeling and optimization of gain-boosted cascode amplifier for high-speed and low-voltage applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(3), 169–173.

    Article  Google Scholar 

  22. Pakala, S. H., et al. (2015). Voltage buffer compensation using flipped voltage follower in a two-stage CMOS op-amp. IEEE 58th international midwest symposium on circuits and systems (MWSCAS). IEEE.

  23. Di Cataldo, G., et al. (2016). Improved single-Miller passive compensation network for three-stage CMOS OTAs. Analog Integrated Circuits and Signal Processing, 86(3), 417–427.

    Article  Google Scholar 

  24. Tan, M., & Ki, W.-H. (2015). A cascode Miller-compensated three-stage amplifier with local impedance attenuation for optimized complex-pole control. IEEE Journal of Solid-State Circuits, 50(2), 440–449.

    Article  Google Scholar 

  25. Mak, K. H., & Leung, K. N. (2014). A signal-and transient-current boosting amplifier for large capacitive load applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2777–2785.

    Article  Google Scholar 

  26. Yan, Z., et al. (2015). Nested-current-mirror rail-to-rail-output single-stage amplifier with enhancements of DC gain, GBW and slew rate. IEEE Journal of Solid-State Circuits, 50(10), 2353–2366.

    Article  Google Scholar 

  27. Grasso, A. D., Palumbo, G., & Pennisi, S. (2008). Comparison of the frequency compensation techniques for CMOS two-stage Miller OTAs. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(11), 1099–1103.

    Article  Google Scholar 

  28. Grasso, A. D., Palumbo, G., & Pennisi, S. (2015). High-performance four-stage CMOS OTA suitable for large capacitive loads. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(10), 2476–2484.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, U., Gupta, M. & Singh, U. Frequency compensation of two stage CMOS circuit using negative capacitance and flipped voltage follower. Analog Integr Circ Sig Process 90, 175–188 (2017). https://doi.org/10.1007/s10470-016-0857-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0857-3

Keywords

Navigation