Skip to main content
Log in

A scheme to improve PCE of differential-drive CMOS rectifier for low RF input power

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a scheme to improve power conversion efficiency (PCE) of differential-drive CMOS rectifier for low RF input power is proposed. Auxiliary transistors are utilized to provide forward body biasing for the primary transistors of the rectifier. As a result, the threshold voltages of the primary transistors are reduced. Hence, higher PCE is achieved for lower RF input power. The circuits are designed in a standard 180 nm CMOS technology. Measurement results exhibit a considerable PCE improvement by the proposed design at the RF input frequency of 916 MHz in the three-stage configuration. For 50 K\(\mathrm{{\Omega }}\) resistive load, the proposed rectifier has a maximum 10.9 % PCE improvement and requires 2 dB less RF input power to achieve the comparable peak PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communication Surveys Tutorials, 17(2), 757–789.

    Article  Google Scholar 

  2. Chouhan, S. S., & Halonen, K. (2015). A novel cascading scheme to improve the performance of voltage multiplier circuits. Analog Integrated Circuits and Signal Processing, 84, 373–381.

    Article  Google Scholar 

  3. FCC codes of regulation. http://www.access.gpo.gov/nara/cfr/waisidx_03/47cfr15_03.htmpt.15

  4. Koji, K., Atsushi, S., & Ito, T. (2009). High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE Journal of Solid State Circuits, 44(11), 3011–3018.

    Article  Google Scholar 

  5. Umeda, T., Yoshida, H., Sekine, S., Fujita, Y., Suzuki, T., & Otaka, S. (2006). A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE Journal of Solid State Circuits, 41(1), 35–41.

    Article  Google Scholar 

  6. Nakamoto, H., Yamazaki, D., Yamamoto, T., Kurata, H., Yamada, S., Mukaida, K., et al. (2007). A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-um technology. IEEE Journal of Solid State Circuits, 42(1), 101–110.

    Article  Google Scholar 

  7. Kotani, K., & Ito, T. (2007). High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs. IEEE Asian Solid-state Circuits Conference, 58(6), 119–122.

    Google Scholar 

  8. Papotto, G., Carrara, F., & Palmisano, G. (2011). A 90-nm CMOS threshold compensated RF energy harvester. IEEE Journal of Solid State Circuits, 46(9), 1985–1997.

    Article  Google Scholar 

  9. Hameed, Z., & Moez, K. (2015). A 3.2 V -15 dBm adaptive threshold-voltage compensated rf energy harvester in 130 nm CMOS. IEEE Transations on Circuits and Systems-I: Regular Paper, 62(4), 948–956.

    Article  MathSciNet  Google Scholar 

  10. Mandal, S., & Sarpeshkar, R. (2007). Low-power CMOS rectifier design for RFID applications. IEEE Transations on Circuits and Systems-I: Regular Papers, 54(6), 1177–1188.

    Article  Google Scholar 

  11. Filanovsky, I. M., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Electron Devices, 48(7), 876–884.

    Google Scholar 

  12. Stoopman, M., Keyrouz, S., Visser, H. J., Philips, K. & Serdijn, W. A. (2013). A self-calibrating RF energy harvester generating 1 V at -26.3 dBm. In Proceedings of IEEE symposia on VLSI technology and circuits (pp. 226–227), Kyoto

  13. Stoopman, M., Keyrouz, S., Visser, H. J., Philips, K., & Serdijn, W. A. (2014). Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE Journal of Solid-State Circuits, 49(3), 622–634.

    Article  Google Scholar 

  14. Hameed, Z., & Moez, K. (2014). Hybrid forward and backward threshold compensated RF-DC power converter for RF energy harvesting. IEEE Journal of Emerging and Selected Topics in Circuits and Systems, 4(3), 335–343.

    Article  Google Scholar 

  15. Li, B., Shao, X., Shahshahan, N., Goldsman, N., Salter, T., & Metze, G. (2013). An antenna co-design dual band RF energy harvester. IEEE Transations on Circuits and Systems-I: Regular Papers, 60(12), 3256–3266.

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the TEKES Project Dnro 3246/31/2014 of the Tekes—the Finnish Funding Agency for Innovation Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Chouhan, S.S. & Halonen, K. A scheme to improve PCE of differential-drive CMOS rectifier for low RF input power. Analog Integr Circ Sig Process 90, 113–124 (2017). https://doi.org/10.1007/s10470-016-0825-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0825-y

Keywords

Navigation