Skip to main content
Log in

Modeling, synthesis, analysis, and simulation of CCCII-based floating gyrators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The small-signal pathological models and equivalent circuits of various CCCIIs are initially developed in this paper. The models are then used in the synthesis of floating gyrators using the CCCIIs. Three different topological types of the floating gyrators, the type I, II and III gyrators, are acquired by the NAM expansion method. The first, employing four CCCIIs, has 96 equivalent realizations, the second, employing two CCCIIs and one BOCCCII, has 32 equivalent realizations, the third, employing one BOCCCII or one BOICCCII and one DOCCCII−, has four equivalent realizations. The analysis and simulation of synthesized circuits show that the used synthesis method is simple, systematic, valid, and powerful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(2), 82–91.

    Article  Google Scholar 

  2. Siripruchyanun, M., & Jaikla, W. (2008). Current controlled current conveyor transconductance amplifier (CCCCTA): A building block for analog signal processing. Electrical Engineering, 90(6), 443–453.

    Article  Google Scholar 

  3. Li, Y. A. (2015). NAM expansion method for systematic synthesis of floating gyrators using CCCCTAs. Analog Integrated Circuits and Signal Processing, 82(3), 733–743.

    Article  Google Scholar 

  4. Jantakun, A., Pisutthipong, N., & Siripruchyanun, M. (2009). A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs. In Proceedings of the 6th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON ‘09) (pp. 560–563), Pattaya, Chonburi, Thailand.

  5. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2010). New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers. Radioengineering, 19(1), 194–198.

    Google Scholar 

  6. Siripruchyanun, M., & Jaikla, W. (2008). CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEU-International Journal of Electronics and Communications, 62(4), 277–287.

    Article  Google Scholar 

  7. Tangsrirat, W. (2009). Novel minimum-component universal filter and quadrature oscillator with electronic tuning property based on CCCDBAs. Indian Journal of Pure and Applied Physics, 47(11), 815–822.

    Google Scholar 

  8. Keskin, A. U., & Hancioglu, E. (2005). CDBA-based synthetic floating inductance circuits with electronic tuning properties. Electronics and Telecommunications Research Institute Journal, 27(2), 239–242.

    Google Scholar 

  9. Kiranon, W., Kesorn, J., & Sangpisit, W. (1997). Electronically tunable multifunctional translinear-C filter and oscillator. Electronics Letters, 33(7), 573–574.

    Article  Google Scholar 

  10. Kumngern, M., Chanwutitum, J., & Dejhan, K. (2010). Electronically tunable multiphase sinusoidal oscillator using translinear current conveyors. Analog Integrated Circuits and Signal Processing, 65(2), 327–334.

    Article  Google Scholar 

  11. Skotis, G. D., & Psychalinos, C. (2010). Multiphase sinusoidal oscillators using second generation current conveyors. AEÜ-International Journal of Electronics and Communications, 64(12), 1178–1181.

    Article  Google Scholar 

  12. Ranjan, A., Ghosh, M., & Paul, S. K. (2015). Third-order voltage-mode active-C band pass filter. International Journal of Electronics, 102(5), 781–791.

    Article  Google Scholar 

  13. Kumngern, M., Jongchanachavawat, W., & Dejhan, K. (2010). New electronically tunable current-mode universal biquad filter using translinear current conveyors. International Journal of Electronics, 97(5), 511–523.

    Article  Google Scholar 

  14. Sagbas, M., Ayten, U. E., Sedef, H., & Koksal, M. (2012). Reply to comment on “Electronically tunable floating inductance simulator”. AEÜ-International Journal of Electronics and Communications, 66(1), 86–88.

    Article  Google Scholar 

  15. Awad, I. A. (1999). Inverting second generation current conveyors: The missing building blocks, CMOS realizations and applications. International Journal of Electronics, 86(4), 413–432.

    Article  Google Scholar 

  16. Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electrical Engineering, 88(6), 519–525.

    Article  Google Scholar 

  17. Haigh, D. G., Clarke, T. J. W., & Radmore, P. M. (2006). Symbolic framework for linear active circuits based on port equivalence using limit variables. IEEE Transactions on Circuits and Systems I, 53(9), 2011–2024.

    Article  MathSciNet  Google Scholar 

  18. Haigh, D. G., & Radmore, P. M. (2006). Admittance matrix models for the nullor using limit variables and their application to circuit design. IEEE Transactions on Circuits and Systems I, 53(10), 2214–2223.

    Article  MathSciNet  Google Scholar 

  19. Saad, R. A., & Soliman, A. M. (2008). Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Transactions on Circuits and Systems I, 55(9), 2726–2735.

    Article  MathSciNet  Google Scholar 

  20. Saad, R. A., & Soliman, A. M. (2008). Generation, modeling, and analysis of CCII-based gyrators using the generalized symbolic framework for linear active circuits. International Journal of Circuit Theory and Applications, 36(3), 289–309.

    Article  MATH  Google Scholar 

  21. Saad, R. A., & Soliman, A. M. (2010). On the systematic synthesis of CCII-based floating simulators. International Journal of Circuit Theory and Applications, 38(9), 935–967.

    Article  MATH  Google Scholar 

  22. Soliman, A. M. (2010). Generation of current conveyor based oscillators using nodal admittance matrix expansion. Analog Integrated Circuits and Signal Processing, 65(1), 43–59.

    Article  Google Scholar 

  23. Soliman, A. M. (2011). Generation of generalized impedance converter circuits using NAM expansion. Circuits, Systems, and Signal Processing, 30(5), 1091–1114.

    Article  Google Scholar 

  24. Soliman, A. M. (2012). Three port gyrator circuits using transconductance amplifiers or generalized conveyors. AEU-International Journal of Electronics and Communications, 66, 286–293.

    Article  Google Scholar 

  25. Sánchez-López, C. (2013). Pathological equivalents of fully-differential active devices for symbolic nodal analysis. IEEE Transactions on Circuits and Systems I, 60(3), 603–615.

    Article  MathSciNet  Google Scholar 

  26. Sánchez-López, C., Cante-Michcol, B., Morales-López, F. E., & Carrasco-Aguilar, M. A. (2013). Pathological equivalents of CMs and VMs with multi-outputs. Analog Integrated Circuits and Signal Processing, 75(1), 75–83.

    Article  Google Scholar 

  27. Petrzela, J. (2014). Bilinear reconfigurable filters derived by using matrix method of unknown nodal voltages. In 37th international conference on telecommunications and signal processing (TSP) (pp. 358–363), Berlin.

  28. Petrzela, J., Vyskocil, P., & Prokopec, J. (2010). Fundamental oscillators based on diamond transistors. In Proceedings of 20th international conference, Radioelektronika (pp. 217–220), Brno.

  29. Tan, L. L., Liu, K. H., Bai, Y., & Teng, J. F. (2013). Construction of CDBA and CDTA behavioural models and the applications in symbolic circuit analysis. Analog Integrated Circuits and Signal Processing, 75(3), 517–523.

    Article  Google Scholar 

  30. Tran, H. D., Wang, H. Y., Nguyen, Q. M., Chiang, N. H., Lin, W. C., & Lee, T. F. (2015). High-Q biquadratic notch filter synthesis using nodal admittance matrix expansion. AEÜ-International Journal of Electronics and Communications, 69(7), 981–987.

    Article  Google Scholar 

  31. Li, Y. A. (2013). NAM expansion method for systematic synthesis of OTA-based floating gyrators. AEÜ-International Journal of Electronics and Communications, 67(4), 289–294.

    Article  Google Scholar 

  32. Li, Y. A. (2013). On the systematic synthesis of OTA-based Wien oscillators. AEÜ-International Journal of Electronics and Communications, 67(9), 754–760.

    Article  Google Scholar 

  33. Li, Y. A. (2012). A series of new circuits based on CFTAs. AEÜ-International Journal of Electronics and Communication, 66(7), 587–592.

    Article  Google Scholar 

  34. Li, Y. A. (2014). On the systematic synthesis of OTA-based KHN filters. Radioengineering, 23(1), 540–548.

    Google Scholar 

  35. Li, Y. A. (2015). Systematic derivation for quadrature oscillators using CCCCTAs. Radioengineering, 24(2), 535–543.

    Article  Google Scholar 

  36. Li, Y. A. (2015). Derivation for current-mode Wien oscillators using CCCCTAs. Analog Integrated Circuits and Signal Processing, 84(3), 479–490.

    Article  Google Scholar 

  37. Sotner, R., Jerabek, J., Herencsar, N., Dostal, T., & Vrba, K. (2011). Additional approach to the conception of current follower and amplifier with controllable features. In Proceedings of the 34th international conference on telecommunications and signal processing (TSP 2011) (pp. 279–283).

  38. Sotner, R., Kartci, A., Jerabek, J., Herencsar, N., Dostal, T., & Vrba, K. (2012). An additional approach to model current followers and amplifiers with electronically controllable parameters from commercially available ICs. Measurement Science Review, 12(6), 255–265.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2012JM8017). The author would also like to thank the anonymous reviewers for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongAn Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Modeling, synthesis, analysis, and simulation of CCCII-based floating gyrators. Analog Integr Circ Sig Process 88, 443–453 (2016). https://doi.org/10.1007/s10470-016-0774-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0774-5

Keywords

Navigation