Skip to main content
Log in

A CMOS pseudo-exponential current-output DAC with code-dependent body-biasing

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear current-output digital to analog converter (DAC) employing a pseudo-exponential transconductance amplifier is presented. The proposed transconductance amplifier makes use of the code-dependent body-biasing to realize the exponential relationship of the output current to the input digital signal in the CMOS technology. A digital control unit is designed to provide a linearly code-dependent voltage to feed into the transconductance amplifier by charging a capacitor for a period determined by a counter which is loaded by the input digital code. The proposed DAC is simulated in a 180 nm standard CMOS technology. The accuracy of the exponential input-output characteristic is verified by the curve fitting of the simulation results where R-squared value of the fitted functions is greater than 0.999 in all process and temperature corners. The presented DAC consumed 79 μW in the worst-case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Razavi, B. (2000). Design of analog CMOS integrated circuits. New York, NY, USA: McGraw-Hill Inc.

    Google Scholar 

  2. Moosazadeh, T., & Yavari, M. (2014). A pseudo-differential MDAC with a gain-boosting inverter for pipelined ADCs. Analog Integrated Circuits and Signal Processing, 79(2), 255–266.

    Article  Google Scholar 

  3. Chou, F. T., Chen, C. M., & Hung, C. C. (2014). A low-glitch binary-weighted DAC with delay compensation scheme. Analog Integrated Circuits and Signal Processing, 79(2), 277–289.

    Article  Google Scholar 

  4. Duong, Q. T., Dabrowski, J., & Alvandpour, A. (2014). Design and analysis of high speed capacitive pipeline DACs. Analog Integrated Circuits and Signal Processing, 80(3), 359–374.

    Article  Google Scholar 

  5. Mehrjoo, M. S., & Buckwalter, J. F. (2014). A 10 bit, 300 MS/s nyquist current-steering power DAC with 6 V\(_{PP}\) output swing. IEEE Journal of Solid-State Circuits, 49(6), 1408–1418.

    Article  Google Scholar 

  6. Weishing, L., & Shen-Iuan, L. (2003). CMOS exponential function generator. Electronics Letters, 39(1), 1–2.

    Article  Google Scholar 

  7. Custodio, J. R., Goes, J., Paulino, N., Oliveira, J. P., & Bruun, E. (2013). A 1.2-V 165-/spl \(\mu\)W 0.29-mm\(^2\) multibit sigma-delta ADC for hearing aids Using nonlinear DACs and with over 91 dB dynamic-range. IEEE Transactions on Biomedical Circuits and Systems, 7(3), 376–385.

    Article  Google Scholar 

  8. Kunz, H. O. (1978). Exponential D/A converter with a dynamic range of eight decades. IEEE Transactions on Circuits and Systems, 25(7), 522–526.

    Article  Google Scholar 

  9. Guilherme, J., & Franca, J. E. (1994). A logarithmic digital-analog converter for digital CMOS technology, In proceedings of 1994 IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS’94), 490–493.

  10. Purighalla, S., & Maundy, B. (2012). 4-bit parallel-input exponential digital-to-analog converter in CMOS 0.18 \(\mu\)m technology. Circuits, Systems, and Signal Processing, 31(2), 413–433.

    Article  MathSciNet  Google Scholar 

  11. Abuelma’Atti, M. T., & Abuelmaatti, A. M. T. (2012). A new current-mode CMOS analog programmable arbitrary nonlinear function synthesizer. Microeletronics Journal, 43(11), 802–808.

    Article  Google Scholar 

  12. Lin ,M.-L., Erdogan, A.T. and Arslan, T. and Stoica, A. (2008). A novel CMOS exponential approximation circuit. In Proceedings of IEEE International SOC Conference, pp. 301–304.

  13. Abuelmaatti, M. T., & Tassaduq, N. A. (2015). A new implementation for the logarithmic/exponential function generator. Analog Integrated Circuits and Signal Processing, 83(1), 75–84.

    Article  Google Scholar 

  14. Mano, M. (2006). Digital design. Upper Saddle River, NJ, USA: Prantice Hall PTR.

    MATH  Google Scholar 

  15. Koudounas, S., & Georgiou, J. (2007). A reduced-area, low-power CMOS bandgap reference circuit. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3832–3835.

  16. Abuelmaatti, M. T., & Al-Yahia, N. M. (2008). An improved universal CMOS current-mode analog function synthesizer. International Journal of Electronics, 95, 1127–1148.

    Article  Google Scholar 

  17. Naderi, A., Khoei, A., & Hadidi, K. (2010). Circuit implementation of high-resolution rational-powered membership functions in standard CMOS technology. Analog Integrated Circuits and Signal Processing, 65, 217–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Shoaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmailiyan, A., Ghaderi, E., Ghotbi, I. et al. A CMOS pseudo-exponential current-output DAC with code-dependent body-biasing. Analog Integr Circ Sig Process 88, 127–136 (2016). https://doi.org/10.1007/s10470-016-0744-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0744-y

Keywords

Navigation