Skip to main content
Log in

Analysis and modeling of response of external noise in oscillators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, the influence of external-voltage noise on voltage-controlled oscillators (VCOs) is investigated. The phase error is derived using the extended phase domain response of the oscillators based on the impulse sensitivity function. We found that the frequency properties of the noise sensitivity strongly depend on the circuit configuration of the VCO. We applied these results to the linear model of a phase-locked loop (PLL) and conducted a numerical simulation. The simulation result showed that the generation of the phase error depends on the timing of impulse noise and the bandwidth of the PLL. The test chip for verification is designed and fabricated with a standard CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Hajimiri, A., & Lee, T. H. (1998). A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33(2), 179–194.

    Article  Google Scholar 

  2. Eliezer, O. E., Staszewski, R. B., Bashir, I., Bhatara, S., & Balsara, P. T. (2009). A phase domain approach for mitigation of self-interference in wireless transceivers. IEEE Journal of Solid-State Circuits, 44(5), 1436–1453.

    Article  Google Scholar 

  3. Bashir, I., Staszewski, R. B., Eliezer, O., Banerjee, B., & Balsara, P. T. (2011). A novel approach for mitigation of RF oscillator pulling in a polar transmitter. IEEE Journal of Solid-State Circuits, 46(2), 403–415.

    Article  Google Scholar 

  4. Maffezzoni, P. (2008). Analysis of oscillator injection locking through phase-domain impulse-response. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(5), 1297–1305.

    Article  MathSciNet  Google Scholar 

  5. Dunwell, D., & Carusone, A. C. (2013). Modeling oscillator injection locking using the phase domain response. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 2823–2833.

    Article  Google Scholar 

  6. Huang, Y.-C., & Liu, S.-I. (2013). A 2.4-GHz subharmonically injection-locked PLL with self-calibrated injection timing. IEEE Journal of Solid-State Circuits, 48(2), 417–428.

    Article  Google Scholar 

  7. Heydari, P. (2004). Analysis of the PLL jitter due to power/ground and substrate noise. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(12), 2404–2416.

    Article  Google Scholar 

  8. A-Kusha, A., Nagata, M., Verghese, N. K., & Allstot, D. J. (2006, December). Substrate noise coupling in SoC design: modeling, avoidance, and validation. In Proceedings of IEEE (vol. 94, no. 12, pp. 2109–2138).

  9. Shimizu, A., Mizuno, J., Morishita, S., Hida, K., & Yoshimura, T. (2014, December). Analysis and modeling of oscillators with interference noise. In IEEE international conference on electronics circuits and systems (ICECS) (pp. 128–131).

  10. Lee, J., & Wang, H. (2009). Study of subharmonically injection-locked PLLs. IEEE Journal of Solid-State Circuits, 44(5), 1539–1553.

    Article  Google Scholar 

  11. Dally, W. J., & Poulton, J. W. (1998). Digital systems engineering (Chap. 10). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  12. Yoshimura, T., & Iwata, A. (2006). A study of interference in synchronous systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(8), 1726–1740.

    Article  Google Scholar 

  13. T. Yoshimura. (2005). A study of interface circuits for high-speed serial data links (in Japanese), Ph.D. dissertation, Hiroshima University, Hiroshima.

  14. Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE Journal of Solid-State Circuits, 39(9), 1415–1424.

    Article  Google Scholar 

  15. Mirzaei, A., Heidari, M. E., Bagheri, R., & Abidi, A. A. (2008). Multi-phase injection widens lock range of ring-oscillator-based frequency dividers. IEEE Journal of Solid-State Circuits, 43(3), 656–671.

    Article  Google Scholar 

  16. Gardner, F. M. (1980). Charge-pump phase-lock loops. IEEE Transactions on Communications, 28(11), 1849–1858.

    Article  Google Scholar 

  17. Best, R. E. (1993). Phase-locked loops. NY: McGraw-Hill.

    Google Scholar 

  18. Wilson, W. B., Moon, U.-K., Lakshmikumar, K. R., & Dai, L. (2000). A CMOS self-calibrating frequency synthesizer. IEEE Journal of Solid-State Circuits, 35(10), 1437–1444.

    Article  Google Scholar 

  19. Egan, W. F. (1998). Phase-lock basics. NY: Wiley.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shinji Shimizu and Koichiro Hida for their kind support in conducting the numerical analysis and the circuit simulation. This work was supported by STARC FS No. 1304 and the VLSI Design and Education Center (VDEC), The University of Tokyo, in collaboration with Cadence Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimura, T., Kihara, T. Analysis and modeling of response of external noise in oscillators. Analog Integr Circ Sig Process 87, 313–325 (2016). https://doi.org/10.1007/s10470-015-0661-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0661-5

Keywords

Navigation